Статья: Квантовый эффект Холла в двумерных системах

eB

ц

ч

ш

1/2 .

Площадь, занимаемая электроном, при этом равна просто pl2.

Таким образом, в квантовом случае энергия электронов пробегает дискретный ряд значений (квантуется) и электроны занимают эквидистантные (расположенные на одинаковом расстоянии друг от друга) энергетические уровни. Эти уровни называются уровнями Ландау. Число электронов, которое может разместиться на каждом уровне Ландау, может быть легко подсчитано из простых соображений. Дело в том, что электроны являются Ферми-частицами и поэтому два электрона, находящихся на одном уровне энергии и имеющие одинаковый спин, не могут располагаться в одном и том же месте в плоскости канала. В противном случае будет нарушено незыблемое для Ферми-частиц правило (принцип Паули): два фермиона не могут находиться в одном состоянии механического движения.

Будем для простоты считать, что площадь двумерного металла является единичной. Tогда число электронов на каждом уровне Ландау есть просто отношение площади канала к площади pl2, занимаемой одним электроном. Отсюда

ne =

1

pl2

=

eB

p(h/2p)

.

Если подставить численные значения параметров e = 1.6 ·10-19 Кл, B = 102 Тл, (h/2p) = 1.05 ·10-34 Дж·с, то получается, что на каждом уровне Ландау может разместиться примерно 1012 электронов на каждый квадратный сантиметр площади канала.

Полученный результат нуждается в некоторой коррекции. Дело в том, что мы подсчитали число электронов на уровне Ландау с учетом спина, который может принимать два значения: ±1/2. Но в действительности в сильном магнитном поле каждый уровень Ландау расщепляется на два спиновых подуровня, на каждом из которых может разместиться в два раза меньше электронов, чем мы только что подсчитали, а именно:

ne =

eB

2p(h/2p)

=

eB

h

(2)

(здесь и далее h = 2p(h/2p)). Это расщепление уровней достаточно велико, так что спиновые подуровни совершенно не перекрываются. Учет спинового расщепления уровней Ландау не дает ничего нового при рассмотрении квантового эффекта Холла, поэтому мы в дальнейшем будем говорить об уровнях Ландау, хотя на самом деле речь всегда будет идти о подуровне с определенной ориентацией спина.

Проводимость и эффект Холла в двумерном металле

Рассмотрим теперь проводимость и эффект Холла двумерного металла в квантующем магнитном поле. Схема проведения эксперимента представлена на рисунке.

Схема измерения продольного сопротивления и квантового эффекта Холла

Из приведенного рисунка следует, что если пропускать по образцу электрический ток вдоль оси Х, то в магнитном поле Bz ориентированном вдоль оси Z в классическом случае возникает сила Лоренца, отклоняющая электроны к дальней от нас грани образца. Поскольку электроны имеют заряд, то перераспределение электронов вызовет появление электрического поля Ey, величину которого можно найти из условия равенства сил, действующих на электроны в Y-направлении со стороны электрического и магнитного полей: enEy = en vd B, где vd - дрейфовая скорость электрона, n - число электронов проводимости в канале. Величина дрейфовой скорости vd имеет смысл средней скорости направленного движения электронов вдоль оси X и ее не нужно путать со средней скоростью теплового движения.

Учитывая, что плотность электрического тока J = envd, можно получить простое выражение для холловского поля Ey = RJB, где R = 1/(en) - константа Холла. Удобно наряду с константой Холла ввести холловское сопротивление RH = R B. Из определения холловского сопротивления следует, что Ey = RHJ; эта величина действительно измеряется в омах и для случая, когда применима классическая механика, должна быть обратно пропорциональна числу электронов.

Из определения холловского сопротивления следует, что величина RH пропорциональна B и график зависимости RH(B) должен иметь вид прямой линии, выходящей из начала координат, тангенс угла наклона которой к оси абсцисс равен 1/en. Для нормального трехмерного металла при комнатной температуре и не слишком высоких значениях магнитного поля (1-5 Тл) экспериментальные результаты вполне хорошо соответствуют описанной выше картине поведения холловского сопротивления (кстати, эффект Холла в металлах был открыт более ста лет назад в 1879 году американским физиком Е.Г. Холлом).

Зависимость холловского сопротивления от величины приложенного магнитного поля. Кривая с острыми пиками - это зависимость омического сопротивления образца от магнитного поля. Как следует из графика, сопротивление каждый раз обращается в нуль, когда квантовый эффект Холла выходит на плато

Экспериментальные результаты, представленные на рисунке, дают совершенно другой результат. Дело в том, что эти опыты проводились в двумерной МОП-структуре при температуре 1 К, когда классическое рассмотрение неприменимо и нужно учитывать квантование движения электронов. Холловское сопротивление обнаруживает ряд ярко выраженных ступенек, причем значение сопротивления для этих ступенек строго определяется выражением RH = h/(ie2), где i = 1,2,3... (на рисунке видны ступеньки со второй по десятую; константа h/e2 примерно равна 25 кОм). Величина Холловского сопротивления оказывается настолько стабильной (не зависящей от параметров образца и температуры), что это позволило использовать ее в качестве национального стандарта электрического сопротивления в целом ряде развитых стран мира.

Попробуем разобраться, почему получается столь странная зависимость холловского и омического сопротивлений от магнитного поля. Будем считать, что полное число электронов в канале фиксировано и напряжение на затворе постоянно. В этом случае максимальная энергия EF, которую имеют электроны проводимости в кристалле (иначе эту энергию называют энергией Ферми), практически не зависит от магнитного поля, если (h/2p)W << EF, а расстояние между уровнями Ландау (h/2p)W прямо пропорционально B и будет линейно уменьшаться при уменьшении B.

К-во Просмотров: 248
Бесплатно скачать Статья: Квантовый эффект Холла в двумерных системах