Статья: Математическое моделирование нестационарного электрического поля анодной защиты
http://www.bashedu.ru/str_n_col/vestnic/2/authors.htmlРассматривается математическая модель нестационарного электрического поля анодной защиты. Для описания анодных поляризационных кривых предлагается эмпирическая формула зависимости плотности тока от поляризации и скорости изменения потенциала. Входящие в формулу числовые параметры определяются по экспериментальным данным. В трех- и двумерных областях задача сводится к граничному интегральному уравнению для потенциала электрического поля, которое решается с помощью итерационной процедуры. Приводятся результаты численных расчетов пускового режима анодной защиты стального цилиндра, заполненного серной кислотой.
Введение
Электрохимическая анодная защита основана на свойстве некоторых металлов, таких как железо, титан, хром, находящихся в контакте с кислотными или щелочными растворами, переходить в пассивное состояние при сдвиге потенциала в положительном направлении. При этом зависимость “плотность тока – поляризация” имеет ярко выраженный немонотонный характер [1, 2]. В математических моделях анодную поляризационную кривую обычно аппроксимируют прямолинейными отрезками; катодную поляризацию либо не учитывают, либо заменяют линейной зависимостью [3–5].
Анодная защита широко применяется в технологическом оборудовании, контактирующем с кислотными растворами (емкости для хранения и транспортировки, теплообменные аппараты и др.). Стационарные режимы защиты характеризуются неизменным составом агрессивной среды, постоянными тепловыми и гидродинамическими параметрами, а также равномерным распределением защитного потенциала на поверхностях электрохимической системы [4, 6]. Пуск анодной защиты, связанный с начальной пассивацией защищаемых поверхностей, сопровождается высокими плотностями тока и значительной неравномерностью распределения защитного потенциала. Моделирование нестационарных электрических полей, связанных с пусковыми режимами анодной защиты, осложняется также зависимостью параметров анодной поляризационной кривой от скорости изменения потенциала [2, 6].
В предлагаемой модели реализованы граничные условия на электродах, построенные на основе экспериментальных данных. Катодная поляризационная кривая описывается экспоненциальной зависимостью плотности тока от поляризации, аналогичной формуле Тафеля. Для описания анодной поляризационной зависимости предложена немонотонная гладкая функция плотности тока от двух переменных: поляризации и скорости изменения потенциала. Данный подход дает возможность моделирования нестационарных электрических полей в электрохимических системах.
Математическая модель
Рассматривается заполненная проводящей средой область D, граница которой S состоит из анодных Sa, катодных Sk и изолированных Si участков: S=Sa Sc Si, =D S,
Зависимость приложенного напряжения от времени U(t) предполагается линейной, в этом случае скорость пуска V=dU/dt постоянна и играет роль числового параметра. Потенциал электрического поля (p)определяется решением уравнения Лапласа [7]:
, | pD, | (1) |
где p(x, y, z) в трехмерном случае и p(x, y) – в двумерном.
В электролите выполняется закон Ома, который на границе области записывается в виде:
, | pSe, | e=a, k, i, | (2) |
где j - нормальная составляющая плотности тока; - электропроводность среды; n - внутренняя нормаль к границе S; индекс e равен a для анодов, k - катодов и i - изоляторов.
Соотношения для поляризации электродов представляются в виде [8]:
(p)=–(p), | pSk, | (3) |
(p)=U–(p), | pSa, | (4) |
где U=U(t) - межэлектродное напряжение.
Катодная поляризационная кривая описывается функцией:
Jk()=k1[exp(k2)], | (5) |
где k1, k2 - константы, определяемые по экспериментальным данным.
Для описания анодных поляризационных кривых предложена функция:
х | (6) |
где a1, ..., a4 - константы, определяемые по экспериментальным данным; V - скорость развертки напряжения.
Таким образом, для уравнения (1) сформулированы граничные условия: на катодах - (3), (5); на анодах - (4), (6); на изоляторах -
j(p)=0, | pSi. | (7) |
Характеризующий коррозионные потери суммарный электрический заряд Q, проходящий через защищаемые поверхности Sa за время tp, определяется интегралом:
qSa. | (8) |
Если ставить задачу минимизации коррозионных потерь при пуске анодной защиты, то оптимальными в этом смысле следует считать такое количество и расположение катодов, при которых для выбранной скорости V электрический заряд Q, определяемый интегралом (8), минимален.
Вопросы численной реализации
Задача (1)-(7) решалась в трех- и двумерных областях для емкостей различной геометрии. Распределение потенциала определялось решением нелинейного интегрального уравнения, построенного на основе формулы Грина [9], которую с учетом (1) можно записать в виде:
, | (9) |
где p, q S; =(m–1) , m - размерность задачи; G(p, q)=1/R(p, q) при m=3, G(p, q)= –ln[R(p, q)] при m=2; R(p, q) - расстояние между точками p и q. Из формулы (9) с учетом (2) получено интегральное уравнение:
, |
для решения которого применяется итерационная процедура:
, | (11) |
где l - номер итерации; ядро KK [p, q, (q)] определяется соотношениями:
K=.G/n+Je(, V).G/, | qSe; e=a, k, i. |
При выбранной скорости V счет проводился по времени t от 0 до tmax, при этом напряжение увеличивалось от 0 до Umax=V tmax. Затем знак V менялся на противоположный, t уменьшалось от tmax до 2 tmax, напряжение - от Umax до 0. По результатам расчета определялись границы пассивной зоны (U1, U2) и напряжение U, соответствующее минимальной плотности тока. Далее по формуле (8) определялся общий заряд пуска.
Итерационный процесс (11) оценивался по условию для всех pS. При выполнении очередного цикла итераций (11) для каждого t контролировалось выполнение балансового соотношения по току с относительной погрешностью 1 %.
Для определения параметров в формулах (5), (6) были использованы данные, приведенные в [6] для стали 18 % Cr – 8 % Ni в 1N H2SO4 при 250 C. При этом получены значения параметров: k1=0.04315, k2=17.25, a1=350, a2=0.3, a3=17, a4=0.3.
Рис. 1. Анодные поляризационные зависимости, построенные по формуле (6) для скоростей V, В/час: 1 – 720; 2 – 360; 3 – 180; 4 – 90; 5 – 45; 6 – 22,5; 7 – 12; 8 – 6; 9 – 1,6; 10 – 0,4; 11 – 0,025. Точками обозначены экспериментальные данные для скоростей V, В/час: 720; 360; 12; 6; 1,6; 0,4; 0,025.
На рис. 1 представлены анодные поляризационные зависимости j(), построенные по формуле (6). Сплошной линией выделены кривые, для которых экспериментальные данные [6] при тех же значениях скорости V нанесены точками. Точки выбраны из трех участков: 1) участка максимальной плотности тока в области активного растворения; 2) переходного участка; 3) участка пассивного состояния анода. Из рисунка видно, что предложенная зависимость (6) качественно согласуется с экспериментальными данными в исследуемом диапазоне значений скорости развертки потенциала.
Результаты расчетов
Приведем некоторые результаты численных расчетов пусковых режимов анодной защиты стального цилиндра, заполненного серной кислотой и защищаемого одним цилиндрическим катодом (рис. 2).
--> ЧИТАТЬ ПОЛНОСТЬЮ <--