Статья: Matroid maps

Matroid maps

connecting the chambers u and v. Let now the chamber x moves along Matroid mapsfrom u to v, then the corresponding residue Matroid mapsmoves from Matroid mapsto Matroid maps. Since the geodesic gallery Matroid mapsintersects every wall no more than once [5, Lemma 2.5], the chamber x crosses each wall Matroid mapsin Matroid mapsno more than once and, if it crosses Matroid maps, it moves from the same side of Matroid mapsas u to the opposite side. But, by the assumptions of the theorem, this means that the residue Matroid mapscrosses each wall Matroid mapsno more than once and moves from the side of Matroid mapsopposite u to the side containing u. But, by the geometric interpretation of the Bruhat order, this means [2, Theorem 5.7] that Matroid mapsdecreases, with respect to the u-Bruhat order, at every such step, and we ultimately obtain Matroid maps

Список литературы

Borovik A.V., Gelfand I.M. WP-matroids and thin Schubert cells on Tits systems // Advances Math. 1994. V.103. N.1. P.162-179.

Borovik A.V., Roberts K.S. Coxeter groups and matroids, in Groups of Lie Type and Geometries, W. M. Kantor and L. Di Martino, eds. Cambridge University Press. Cambridge, 1995 (London Math. Soc. Lect. Notes Ser. V.207) P.13-34.

Gale D., Optimal assignments in an ordered set: an application of matroid theory // J. Combinatorial Theory. 1968. V.4. P.1073-1082.

Gelfand I.M., Serganova V.V. Combinatorial geometries and torus strata on homogeneous compact manifolds // Russian Math. Surveys. 1987. V.42. P.133-168.

Ronan M. Lectures on Buildings - Academic Press. Boston. 1989.

Tits J. A local approach to buildings, in The Geometric Vein (Coxeter Festschrift) Springer-Verlag, New York a.o., 1981. P.317-322.

К-во Просмотров: 155
Бесплатно скачать Статья: Matroid maps