Статья: Matroid maps
A.V. Borovik, Department of Mathematics, UMIST
1. Notation
This paper continues the works [1,2] and uses, with some modification, their terminology and notation. Throughout the paper W is a Coxeter group (possibly infinite) and P a finite standard parabolic subgroup of W. We identify the Coxeter group W with its Coxeter complex and refer to elements of W as chambers, to cosets with respect to a parabolic subgroup as residues, etc. We shall use the calligraphic letter as a notation for the Coxeter complex of W and the symbol
for the set of left cosets of the parabolic subgroup P. We shall use the Bruhat ordering on
in its geometric interpretation, as defined in [2, Theorem 5.7]. The w-Bruhat ordering on
is denoted by the same symbol
as the w-Bruhat ordering on
. Notation
, <w, >w has obvious meaning.
We refer to Tits [6] or Ronan [5] for definitions of chamber systems, galleries, geodesic galleries, residues, panels, walls, half-complexes. A short review of these concepts can be also found in [1,2].
2. Coxeter matroids
If W is a finite Coxeter group, a subset is called a Coxeter matroid (for W and P) if it satisfies the maximality property: for every
the set
contains a unique w-maximal element A; this means that
for all
. If
is a Coxeter matroid we shall refer to its elements as bases. Ordinary matroids constitute a special case of Coxeter matroids, for W=Symn and P the stabiliser in W of the set
[4]. The maximality property in this case is nothing else but the well-known optimal property of matroids first discovered by Gale [3].
In the case of infinite groups W we need to slightly modify the definition. In this situation the primary notion is that of a matroid map
i.e. a map satisfying the matroid inequality
The image of
obviously satisfies the maximality property. Notice that, given a set
with the maximality property, we can introduce the map
by setting
be equal to the w-maximal element of
. Obviously,
is a matroid map. In infinite Coxeter groups the image
of the matroid map associated with a set
satisfying the maximality property may happen to be a proper subset of
(the set of all `extreme' or `corner' chambers of
; for example, take for
a large rectangular block of chambers in the affine Coxeter group
). This never happens, however, in finite Coxeter groups, where
.
So we shall call a subset a matroid if
satisfies the maximality property and every element of
is w-maximal in
with respect to some
. After that we have a natural one-to-one correspondence between matroid maps and matroid sets.
We can assign to every Coxeter matroid for W and P the Coxeter matroid for W and 1 (or W-matroid).
Теорема 1. [2, Lemma 5.15] A map
is a matroid map if and only if the map
defined by is also a matroid map.
Recall that denotes the w-maximal element in the residue
. Its existence, under the assumption that the parabolic subgroup P is finite, is shown in [2, Lemma 5.14].
In is a matroid map, the map
is called the underlying flag matroid map for
and its image
the underlying flag matroid for the Coxeter matroid
. If the group W is finite then every chamber x of every residue
is w-maximal in
for w the opposite to x chamber of
and
, as a subset of the group W, is simply the union of left cosets of P belonging to
.
3. Characterisation of matroid maps
Two subsets A and B in are called adjacent if there are two adjacent chambers
and
, the common panel of a and b being called a common panel of A and B.
Лемма 1. If A and B are two adjacent convex subsets of then all their common panels belong to the same wall
.
We say in this situation that is the common wall of A and B.
For further development of our theory we need some structural results on Coxeter matroids.
Теорема 2. A map is a matroid map if and only if the following two conditions are satisfied.
(1) All the fibres ,
, are convex subsets of
.
(2) If two fibres and
of
are adjacent then their images A and B are symmetric with respect to the wall
containing the common panels of
and
, and the residues A and B lie on the opposite sides of the wall
from the sets
,
, correspondingly.
Доказательство. If is a matroid map then the satisfaction of conditions (1) and (2) is the main result of [2].
Assume now that satisfies the conditions (1) and (2).
First we introduce, for any two adjacent fibbers and
of the map
, the wall
separating them. Let
be the set of all walls
.
Now take two arbitrary residues and chambers
and
. We wish to prove
.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--