Статья: Морфофункциональный анализ стелющейся колонии у гидроидов на примере cordylophora inkermanica marfenin
Заякоривание науплиуса Artemia происходит с первого же раза любыми щупальцами. Только гидранты, начавшие рассасываться, хуже заякоривают добычу. Удержание жертвы и подтягивание ее к гипостому происходит одним или несколькими щупальцами. Остальные щупальца могут быть в это время несколько сжаты или даже отведены назад вдоль тела гидранта. Гипостом открывается навстречу жертве и натягивается на нее. Щупальца в заглатывании не принимают участия. Время проглатывания свежевылупившегося науплиуса взрослым голодным гидрантом обычно от 4 до 8 мин, в зависимости от положения науплиуса при заглатывании. Время проглатывания учитывали от момента заяко-ривания жертвы до смыкания гипостома после заглатывания.
Обычно гидрант может проглотить одного (редко двух) науплиуса, хотя заякорить может нескольких. Щупальца полностью возвращаются в исходное ловчее положение через 5—10 мин после проглатывания науплиуса. У старого или сытого гидранта щупальца могут более 2ч оставаться в нерабочем положении. Во время заглатывания жертвы и после этого свободные щупальца способны продолжать заякоривать новые жертвы. В этом случае после заякоривания жертва висит некоторое время обездвиженная на щупальце, а затем спадает.
Молодые гидранты, не достигшие взрослых размеров, также хорошо заякоривают науплиусов Artemia, но проглотить их не могут. В этом варианте гипостом маленького гидранта выворачивается наружу, и гидрант присасывается к науплиусу. Очевидно, таким образом гидранты также способны питаться, хотя науплиус на первый взгляд остается непереваренным. Чуть более крупные гидранты способны заглотить часть добычи и переваривать ее; остальная часть остается непереваренной и затем отбрасывается.
Переваривший только что пищу гидрант заглатывает второго науп лиуса дольше, чем первого. Старые гидранты на последних этапах своего жизненного цикла вовсе не могут проглатывать науплиусов.
Рацион гидроидов специально не изучали, но, судя по некоторым наблюдениям, он должен быть достаточно широк. Гидранты успешно заякоривают и проглатывают икру мидий. В то же время они могут справиться и с хиропомидой, размером превышающей их в несколько раз.
Переваривание науплиуса Artemia в гидранте при температуре 20— 25° С продолжается 1—1,5 ч (в старом гидранте значительно дольше). Пищеварительная перистальтика, описанная для ряда гидроидов (Марфенин, 1981), в данном случае выражена слабо. Наблюдаются пульсации центральной зоны тела гидранта с периодом 2,5—3,5 мин, которые, возможно, являются разновидностью пищеварительной перистальтики. Пульсации тела гидранта способствуют раздавливанию пищи. В самом гидранте клетки энтодермы захватывают частицы пищи, хорошо различимые под микроскопом. Тело гидранта становится из-за этого менее прозрачным, что мешает достоверно установить момент окончания первичного переваривания науплиуса. Вывод пищи из гидранта в ценосарк колонии начинается примерно через 10—15 мин с момента окончания проглатывания добычи. Видно, как частицы или их агрегации выносятся гидроплазмой при сжатии гидранта в полость ценосарка. К этому времени контуры проглоченного науплиуса размываются. При обратном токе гидроплазмы в гидрант различимые частицы в ней чаще всего отсутствуют.
Установить время наступления экскреции не удалось, несмотря на наблюдения в течение 12 ч после кормления. По-видимому, для этих гидроидов не характерно обязательное “выплевывание” гидрантами шкурок науплиусов. В чашках Петри, в которых некоторые колонии длительно содержались в неподвижной воде, также не было обнаружено пустых шкурок науплиусов. Участки дна чашки вблизи гидрантов постепенно покрывались тонким слоем мелких частиц и их агрегаций. Удалось, однако, установить, что некоторые гидранты примерно через 10 ч после кормления (при 20° С) выворачивали гипостомы энтодермой наружу. При этом из гидранта вываливалась (или в течение нескольких часов торчала) рыхлая масса мелких частиц розовато-оранжевого цвета, входных по размерам с теми, что устилали дно. По прошествии 10—12 ч зкскпетировавшие гидранты рассасывались. Многочисленные наблюдения подтвнрждают, что вокруг рассосавшихся за последние 12 ч гидрантов, получивших до того пищу, как правило, появляются розоватые поля выбросов. Не ясно пока, можно ли считать это нормальной, экскрецией, Защитное поведение и реакция испуга сводятся у гидрантов к сжатию щупалец примерно в 2—3 раза, а иногда к отведению щупалец назад вдоль тела. Быстрого изгибания теля у гидрантов не наблюдалось.
Физиологическая интеграция колонии
Физиологическая интеграция колонии основывается на работе распределительной системы, которая обеспечивает перенос пищи и клеток, взвешенных в гидроплазме по всей колонии.
Распределительная система у С. inkermanica работает по пульсатор-но-перистальтическому типу, т. е. гидроплазма в полости ценосарка колонии находится в постоянном движении, перемещаясь то в одном, то в противоположном направлении. Гидроплазматические течения обеспечиваются в основном за счет активности (пульсаций) гидрантов. Верхушки роста длиной около 0,5 мм, пульсируя, также принимают участие в перемещении гидроплазмы, однако основная роль их—в задержании пищевых частиц. Это достигается с помощью перистальтической активности дистальных участков столонов. Перистальтические сжатия, направленные к верхушке столона, ясно наблюдаются в последнем и слабее в предпоследнем междоузлии столона, т, е. зона перистальтики имеет протяженность около 5 мм. Во время перистальтически направляющегося (дистально) сжатия ценосарка гидроплазма оттекает назад к центру колонии, а частицы пищи не могут пройти через сузившийся просвет ценосарка и таким способом оказываются отцеженными и задержанными в верхушке роста, где они захватываются клетками энтодермы.
Специальные опыты с кормлением только проксимальных гидрантов колонии показал^, что рост тем не менее осуществлялся в дистальной части колонии. Расстояние между гидрантом, получавшим пищу, и зоной роста было до 20 мм. Очевидно, оно могло бы быть и большим в более длинных колониях. Этот факт свидетельствует о физиологической интеграции колонии. Установлено также, что рост колонии может некоторое время продолжаться без пищи за счет одновременного рассасывания ее проксимального конца, что также достигается с помощью физиологической интеграции.
На основе косвенных данных можно предположить, что даже большая колония, с суммарной, длиной гидроризы более 500 мм, представляет собой достаточно целостное образование. Это следует хотя бы из существования глубоких депрессий, охватывающих всю колонию, наступающих, очевидно, вследствие дисбаланса между числом верхушек роста и количеством потребляемой пищи. Отрицая физиологическую интеграцию колонии в целом, трудно было бы объяснить, почему в колонии не уживаются очаги депрессии с очагами бурного роста.
Прямые наблюдения гидроплазматических течений показывают, что в период развития депрессии частицы пищи переносятся гидроплазмой в очаги депрессии с полностью рассосавшимися гидрантами из мест, еще не затронутых депрессией.
Для проверки предположения о связи мест, получающих пищу, с местами, не получающими ее, был поставлен такой эксперимент. Гидранты на пяти ветвях гидроризы (столонах), расположенных в разных местах уже большой колонии (суммарная протяженность гидроризы которой 130 мм), не получали пищи, в то время как все остальные получали по одному науплиусу дважды в сутки. Рост “голодных” ветвей гидроризы, которые составляли примерно пятую часть от общей протяженности, сравнивали с соседними “сытыми” ветвями примерно такой же длины. В течение 3 сут (шесть измерений) прирост за 0,5 сут в “голодных” и “сытых” ветвях практически не различался. Не было однозначных отличий и в суммарном приросте за 3 сут. Следовательно, рост “голодных” ветвей гидроризы происходил за счет пищи, получаемой в других местах колонии.
Нельзя, впрочем, представлять физиологическую интеграцию в форме полного усреднения пищи между всеми частями колонии. Безусловно, имеются зоны преимущественного снабжения—это верхушки роста столонов. Кроме того, оказывается, что ветвление гидроризы происходит-обычно вблизи гидрантов или групп гидрантов, получивших много пищи. Скорее всего физиологическая интеграция колонии выражается в гибких формах, допуская некоторую автономию отдельных частей. Иногда, как было описано выше, это приводит к фрагментации колонии, что является разновидностью бесполого размножения.
Обсуждение результатов
Нет оснований подвергать сомнению исходный примитивизм стелющихся колоний. У С. inkermanica, так же, как и у других типичных представителей стелющихся колоний, гидранты, как правило, образуются непосредственно на гидроризе. В результате вся жизнедеятельность колоний оказывается тесно связанной с процессами, происходящими на поверхности субстрата или в ближайшем слое воды. Такие виды, как Clava multicornis, используют это, приспосабливаясь к ловле бентосных животных. Изучение же пищевого поведения С. inkermanica показывает, что этот вид должен питаться в основном зоопланктоном, так как ему не свойственны значительные изгибания тела и длинные щупальца, хотя при случае он способен съесть и бентосное животное.
Несмотря на то, что С. inkermanica и гидроиды из семейства Саmраnulariidae далеко отстоят друг от друга, относясь к разным подотрядам, их гидранты в некотором отношении схожи. Прежде всего они одинаковых размеров и похожей формы (за исключением гипостома). Кроме того, щупальца, которые исходно в семействе Clavidae расположены неупорядоченно по телу гидранта, у С. inkermanica группируются в многоярусный венчик, сопоставимый по форме и размерам с двухъярусным венчиком кампанулярннд. Это, так же как и пищевое поведение, по-видимому, свидетельствует в пользу специализации гидроида на питании зоопланктоном.
В то же время форма стелющейся колонии в общем случае не выгод-па для питания зоопланктоном, так как зона действия гидрантов ограничена субстратом. Одно из решений этого противоречия, очевидно, в приспособлении стелющихся колоний к обитанию на лентовидном или нитевидном субстрате, таком, как зостера или некоторые красные водоросли или же другие гидроиды, которые благодаря своей разветвлен-ности позволяют облавливать толщу воды. В данном случае есть свидетельства, что С. inkermanica использует такой путь, поселяясь на зостере (Марфенин, 1983). Другой способ — поселение на локально благоприятном субстрате, например на моллюсках,—также широко используется различными стелющимися колониями, в том числе и С. inkermanica. В этом варианте существуют различные приспособления для удержания колонии на одном наиболее благоприятном месте (при одновременном ее росте), например в зоне наибольшей турбулентности на раковине вблизи сифонов. Так, у Clava multicornis гидрориза редко растет прямолинейно, а обычно быстро загибается и предпочитает расти вдоль своего же столона. У Hydractinia гидрориза очень сильно ветвится, а ветви сливаются друг с другом, образуя подобие пластинки.
С. inkermanica нельзя по морфологии колонии и характеру ее роста отнести к группе гидроидов, специализирующихся на обитании в локально благоприятных местах, так как у этого вида нет никаких приспособлений для сохранения постоянного местоположения колонии, таких как закручивание столонов во время роста, образование ими анастомозов, переплетения столонов, отрыв столонов от субстрата и т. д. Напротив, линейный рост столонов гидроризы, относительно малая разветвлен-ность гидроризы и отсутствие анастомозов, свойственные С. inkermanica, удобны для быстрого захвата субстрата и распространения по нему, а рассасывание старых частей колонии—для перемещения по субстрату, особенно в периоды недостаточного питания. Все эти особенности оказываются эффективными при обитании на водорослях или гидроидах, т. е. на растущих субстратах. В этом случае оказывается важным поспевать за ростом субстрата и осваивать его новообразовавшиеся части.
Кроме С. inkermanica к группе гидроидов, специализирующихся (или процветающих) на разветвленных субстратах, относятся также Саmраnularia Integra McGill и С, platycarpa (Bale), которые по строению колонии и характеру роста весьма сходны с С. inkermanica, хотя принадлежат к другому подотряду (Thecaphora) (Бурыкин, Марфенин, 1983).
У С. inkermanica представляют особый интерес ее побеги, которые должны быть отнесены к наиболее примитивному типу, так к