Статья: О размерности времени для юриста
Главной особенностью причинно-следственного порядка в окружающем нас мире является то, что следствие не может воздействовать на свою причину, иными словами - то, что в мире отсутствуют замкнутые причинные цепи. Но, мы доказали выше, что незамкнутость причинных цепей связана не со свойством одномерности времени, а со свойством однонаправленности, то есть с отсутствием неупорядоченных временных циклов. Поэтому интересующая нас проблема должна быть разделена на две: а) может ли свойство одномерности времени быть выведена из свойства временной упорядоченности? б). может ли временный порядок быть выведен из причинного порядка? В случае положительного ответа на эти два вопроса будет доказана вывод одномерности времени из причинного порядка, тогда как в случае отрицательного ответа хотя бы на один из них такй вывод будет невозможен. Рассмотрим последовательно эти два вопроса.
Покажем прежде всего, что без серьезных дополнительных доказательств одномерность времени не может быть выведена из свойства временной упорядоченности и что мнение Рейхенбаха о возможности такого вывода, ошибочно11 . Для этого будем использовать более конкретную формулировку упорядоченности, данную в работе12 .
Пусть дано множество X, содержащее его элементы x, y, z. Пусть отношение между двумя его элементами x < y. Тогда множество X называется линейно упорядоченным, если выполняются следующие четыре условия:
1. Для всех x имеем x = x.
2. Если x < y и y < z, то x =z.
3. Если x < y и y < z, то x < z..
4. Для каждой пары x, y либо x < y, либо y < x.
Если линейно-упорядоченное множество X - геометрическая модель времени, а элементы множества x, y, z интерпретируются как моменты времени, будем считать, что время обладает свойством линейной упорядоченности. Причем, легко видеть, что свойство “временной упорядоченности” содержится в данном определении линейной упорядоченности. Действительно, если определить отношение “y находится между x и z” следующим образом:
либо x < y < z,
либо z < y < x, где y < x означает x < y и x = y, то из приведенных умозаключений следует, что из любых моментов x, y, z один и только один находится между двумя другими.
t x < y < z
Очевидно, что для обычной временной координаты , на которой введено отношение x < y выполняются все соотношения линейной упорядоченности. Возникает вопрос: могут ли быть аналогичным способом упорядочены временные модели с двумя и более числом измерений16 , так что для них также будут выполняться все отношения линейной упорядоченности? Если бы это оказалось невозможным, линейная упорядоченность оказалась бы достаточным условием одномерности времени и мы смогли бы сказать, что одномерность времени следует из временного порядка. С другой стороны, если это возможно, т. е. многомерные концептуальные времена также млгут быть линейно упорядочены, одномерность времени окажется, вообще говоря, невыводимой из его упорядоченности. Покажем, что это действительно так.
Для этого рассмотрим двумерную модель, которую можно обобщить на любое конечное число измерений n.
В этой модели по осям откладываются две независимые временные координаты t и T, так что любой момент времени x задается двумя числами: tx и Tx . Множество всех точек (моментов) на “временной плоскости (T, t)”определяется следующими неравенствами:
x < y, если
Tx < Ty
или Tx = Ty , tx < ty
или Tx = Ty , tx = ty
Здесь Tx ,tx , Ty , ty - координаты точек x и y.
Легко видеть, что для такой модели выполняются все отношения линейной упорядоченности.
На это могут возразить, что приведенная модель является просто геометрическим объектом и, возможно, не может быть интерпретирована как концептуальное время, а если это так, можно еще надеяться, что одномерность времени все же вытекает из его линейной упорядоченности. Однако существует теорема, согласно которой любое множество может быть линейно упорядочено. Если согласиться с тем. что время в принципе поддается геометризации (а в противном случае все рассуждения о размерности времени и временном порядке теряют смысл), концептуальные времена, т. е. возможные временные модели, составляют подкласс геометрических объектов и любая многомерная модель в это