Статья: О скорости электромагнитных волн
Реально эфир, как и любая физическая среда, откликается на внешнее воздействие, изменяя свои параметры. Однако в связи с уникальными величинами параметров эфира этот отклик чрезвычайно мал. Сказанное относится и к диэлектрической проницаемости эфира, которая в современной физике принята за константу. На самом деле диэлектрическая проницаемость эфира меняется под действием электрического поля, хотя величина этого изменения настолько мала в радиодиапазоне, что может быть наблюдена лишь на межзвездных расстояниях.
Непредвзятый и внимательный анализ данных по межзвездной дисперсии показывает, что ее поведение определяется изменением диэлектрической проницаемости эфира, а наблюдаемые отклонения от линейной зависимости меры дисперсии (DM) некоторых пульсаров определяются параметрами облака вещества, находящегося в процессе рассеяния после взрыва сверхновой.
Автор предположил, что в диапазоне низких частот диэлектрическая восприимчивость эфира станет соизмеримой с его диэлектрической постоянной, то есть скорость распространения электромагнитных волн в свободном от вещества эфире станет существенно ниже «электродинамической постоянной» c.
Желая проверить эту догадку, автор осуществил эксперимент по измерению скорости бегущей волны в длинной линии (кабеле) на низких частотах.
Для эксперимента была использована двухпроводная линия (витая пара, UTP, category 3) общей длиной 302,65 метра. В качестве источника электромагнитной волны использовались генераторы синусоидальных сигналов Г3-118 (10 Гц – 200 кГц) и Г6-26 (0,001 Гц – 10 кГц). В качестве измерителя использовался двухлучевой осциллограф L-5040 (0 – 40 МГц).
Как стало видно из экспериментальных данных, скорость электромагнитной волны, начиная со 100кГц, падает с уменьшением частоты со скоростью 10 дБ на декаду. Такое возможно лишь при одном условии: если диэлектрическая проницаемость эфира («вакуума») растет с падением частоты со скоростью 20 дБ на декаду.
Причем, рост диэлектрической проницаемости наблюдается для расстояний, соизмеримых с длиной волны, а не для малых расстояний. Это было проверено с помощью другого эксперимента, который обычно выполняется студентами радиотехнических техникумов и вузов во время лабораторных работ. С помощью этого же оборудования измерялась емкость воздушного конденсатора номиналом 720 пф, воздушный зазор – 0,25 мм, в том же диапазоне частот. Измерения показали, что емкость конденсатора не меняется с частотой, то есть для расстояний много меньших, чем длина волны (расстояния между пластинами конденсатора) диэлектрическая проницаемость эфира стабильна.
Проведенный анализ данных по межзвездной дисперсии и эксперименту по измерению скорости электромагнитной волны на низких частотах позволил показать следующее:
Скорость электромагнитных волн в вакууме, которую релятивисты называют «электродинамической постоянной» вовсе не постоянна. Она меняется заметным образом на межзвездных расстояниях в оптическом (квантовом) диапазоне – от вариации температуры эфира, в радиодиапазоне она подвержена межзвездной частотной дисперсии, и подвержена сильному изменению в низкочастотном диапазоне, падая с уменьшением частоты со скоростью 10 дБ на декаду, начиная со 100 кГц (длина волны 3 км и более).
Весь спектр частот электромагнитных волн делится на три кардинально отличающихся диапазона:
квантовый, без частотной дисперсии, с длиной волны короче 1 мм, – длины волны собственного теплового излучения эфира на 2,72 K;
радиодиапазон, с длинами волн от 1 мм до 3 км, где наблюдается слабая частотная дисперсия;
низкочастотный диапазон, с длиной волны более 3 км, где из-за превышения предела упругости эфира наблюдается падение скорости с длиной волны.
Диэлектрическая проницаемость эфира растет с расстоянием для частот ниже 100 кГц (для километровых расстояний).
Известные уравнения электродинамики не могут соблюдаться для распределенных систем более 3 км при частотах менее 100 кГц в связи с непостоянством скорости электромагнитных волн.
Постоянные и квазипостоянные поля не являются частным случаем электродинамики с постоянной скоростью волн.
Обратно-квадратическая кулоновская зависимость силы взаимодействия электрических зарядов от расстояния переходит в обратную кубическую зависимость для больших расстояний (с изломом на 0,5 – 2 км).
Длинные низкочастотные линии электропередачи имеют погонную электрическую и энергетическую емкости более тех, что даются уравнениями электродинамики с постоянной «электродинамической константой».
Из столетней практики радиопередающих устройств известно, что ниже 100 кГц эффективность передачи резко снижается. Теперь этому есть объяснение: ниже 100 кГц падает скорость электромагнитных волн и возрастает диэлектрическая проницаемость эфира, что ведет к уменьшению волнового сопротивления среды и является препятствием для передачи радиоволн.
Подтверждается мнение автора о происхождении магнитных бурь как следствия электромагнитных импульсов тритиево-дейтериевых взрывов на Солнце. При средней частоте 1 Гц колебаний магнитного поля, замеряемых на Земле, их запаздывание от солнечной вспышки составляет около 40 часов, что соответствует скорости электромагнитной волны ≈1000 км/с.
Можно предполагать, что электрические емкости большеразмерных конденсаторов, таких как грозовые облака, ионосферные слои, земной шар и небесные тела, имеют значения много больше, чем это дается формулами с постоянной диэлектрической проницаемостью эфира (вместо линейной зависимости емкости шара от радиуса должна иметь место квадратичная зависимость). Для подтверждения последнего необходимо проведение экспериментов с большеразмерными электрическими емкостями.
Список литературы
Michelson A., Morley E. – American J. Sci., 1887, 34, p. 333...345.
St. Marinov, The velocity of light is direction dependent / Czech. J. Phys. 1974. B24. N9. 965...970.
Lorentz H.A. Proc. Acad. Sci. – Amsterdam, 1904, V.6, p. 809.
Poincare H. Sur la dynamique lйlectron, Comptes rendus de lБcademie des sciences, 140 (1905), pages 1504 – 1508. Oeuvres, tome IX, pages 489...493.
Einstein A. Annalen der Phys., 1905, B.17, s. 891.
Белопольский А.А. Астрономические труды. – Москва, ГИТТЛ, 1954.
Хайдаров К. А. Термодинамика эфира. – Алматы, 2003.
Умов Н.А. Теория простых сред и ее приложение к выводу основных законов электростатических и электродинамических взаимодействий. Одесса, 1873.