Статья: О возможностях физической нереализуемости космологической и гравитационной сингулярностей в общей теории относительности

Из уравнений гравитационного поля, заданных в координатах псевдоевклидова пространства Минковского СО Вейля, с учетом жесткости собственной СО идеальной жидкости, могут быть найдены зависимости координат мировых точек жидкости в СО Вейля от их координат в сопутствующей жидкости СО. Предельное минимальное значение фотометрического радиуса r0 соответствует в этих зависимостях сферической поверхности, в точках которой отсутствует напряженность гравитационного поля и выполняются следующие условия: f0=Her0/c, а: Vc0=HeR0. Значения tk и tk= tk b1/2 момента времени, в который в точке с радиусом rk (отдельно при Rk>R0 (Tk) и при Rk<R0 (Tk)) размер эталона длины откалиброван в СО Вейля по его размеру в сопутствующей жидкости СО (Rk=rk), определяются соответственно в координатном (общем для всей жидкости астрономическом) времени и в квантовом собственном времени точки с радиусом rk.

Отсутствие в СО Вейля, так называемой, «антигравитации» [27], имеющей место в собственной СО идеальной жидкости из-за ненулевого значения космологической постоянной, подтверждает полную устранимость «антигравитационного» поля преобразованием координат. Определимость значения постоянной Хаббла только значениями космологической постоянной и постоянной скорости света подтверждает обусловленность явления расширения Вселенной лишь эволюционным самосжатием вещества в абсолютном пространстве Ньютона – Вейля.

Из-за наличия в этом внутреннем решении (также как и во внешнем решении [16]) принципиальной возможности двузначности функции R(r), функция rметр(r) также может быть двузначной. И, следовательно, уравнения гравитационного поля ОТО действительно допускают возможность существования метрической сингулярности (1/a0=0) внутри физического тела. Тем самым в любые моменты космологического и собственного времени вещества они гарантируют соответствие собственных значений фотометрического радиуса r, не меньших, чем r0, всему бесконечному евклидовому пространству СО Вейля. Поэтому, ни одна область пространства СО Вейля не может соответствовать решению Шварцшильда для r<rge, когда a<0 и b<0 [7]. При этом, как во внешнем (R>R0), так и во внутреннем (R<R0) условно пустых собственных пространствах жидкости скорость объектов, которые неподвижны в СО Вейля, определяется зависимостью Хаббла.

Необычная конфигурация ПВК, при которой достигается минимум суммарной энтальпии всей идеальной жидкости

Такое сингулярное решение уравнений гравитационного поля ОТО соответствует сферически симметричному полому телу с зеркально симметричным собственным пространством и множеством центров тяжести в точках срединной сингулярной сферической поверхности, которая концентрична внешней и внутренней граничным поверхностям тела. При нулевом значении λ подобная конфигурация собственного пространства состоит из двух асимптотически евклидовых полупространств, соединенных узкой горловиной. Эта конфигурация получена Фуллером и Уилером [28, 29], исходя из геометродинамической модели массы. При ненулевом значении λ внутреннее пустое пространство массивного астрономического тела ограничено фиктивной сферой псевдогоризонта будущего. В этом внутреннем пустом пространстве, которое как бы «вывернуто на изнанку» чрезвычайно сильным гравитационным полем, вместо явления расширения Вселенной «наблюдается» явление сжатия «внутренней вселенной» и может сформироваться внутренняя планетная система. В собственных СО этих планет внутренняя граничная поверхность этого астрономического тела будет наблюдаться выпуклой, как и внешняя граничная поверхность. Ведь фотометрические радиусы орбит планет будут больше фотометрического радиуса этой поверхности. И лишь отсутствие далеких звездных систем во внутреннем пустом пространстве позволяет отличить его от внешнего пустого пространства.

Значение фотометрического радиуса в центре тяжести определяется однозначно лишь при обычной конфигурации ПВК жидкости (r0=0 при a0=1). Его принципиально невозможно определить из уравнений ОТО, если конфигурация ПВК необычная (1/a0=0). Ввиду этого необходимо согласиться со следующим утверждением Хокинга [5]: «ОТО, сама по себе (без использования дополнительных закономерностей, полученных в классической физике), не обеспечивает граничные условия в сингулярных точках для уравнений поля. И поэтому она становится «неполной» вблизи этих точек». Абсолютная устойчивость термодинамического равновесного состояния вещества, удерживаемого гравитационным полем и самосжимающегося в СО Вейля как одно целое, может гарантироваться в случае неизменности энтропии и внешнего давления лишь при выполнении следующего условия. Пространственное распределение функции r(rметр) должно соответствовать минимуму лагранжиана энтальпии всего вещества жидкого тела в СО Вейля. Значение этого лагранжиана равно энтальпии жидкости в сопутствующей ей СО и определяется зависимостью, учитывающей непосредственное влияние верхних и нижних слоев вещества на значения функций a(r,r0) и b(r,r0). Пространствен?

К-во Просмотров: 112
Бесплатно скачать Статья: О возможностях физической нереализуемости космологической и гравитационной сингулярностей в общей теории относительности