Статья: Потенциал силы тяжести
Поправка за высоту. Аномалия в свободном воздухе (аномалия Фая). При проведении гравиметрических наблюдений на земной поверхности точки наблюдения, как правило, располагаются выше уровня моря. Для того чтобы наблюденные значения силы тяжести могли быть сопоставимы между собой, их приводят к уровню моря, вводя поправку «за высоту». Смысл этой поправки заключается в следующем.
Сила тяжести на уровне моря определяется из известного нам уже выражения
. (IV.19)
Если же точка наблюдения О расположена на некоторой высоте Н от уровня моря, то притяжение ее определится выражением (рис. 19):
. (IV.20)
Сила тяжести изменится на величину
.
Разлагая выражение по биному Ньютона и ограничиваясь первым членом разложения, имеем
.
Подставляя вместо g среднее для всей Земли значение gср= 980,6 гал, Rcp = 6371,2 км, получим
dg1 = 0,3086Н, (IV.21)
где Н, м.
Это нормальный вертикальный градиент силы тяжести для невращающейся Земли. Точное выражение этого градиента получим с учетом потенциала центробежного ускорения 2w2H, получаемого из уравнения Лапласа DW = 2w2 в новой системе координат. Например, для Н = = 1000 м 2w2Н = 1,058×10-8×10-5 =1 мгал. Важность учета этой поправки очевидна, особенно для сильнопересеченной местности, т.е. в общем случае
dg = 0,3086 Н + 2w2Н (IV.22)
Формула (IV.22) называется поправкой за высоту, или в свободном воздухе, и характеризует нормальное изменение силы тяжести с высотой. С учетом поправки за высоту можно вычислить аномалию силы тяжести в свободном воздухе как разность наблюденного и редуцированного к точке наблюдения нормального значения силы тяжести, вычисленного по формуле Гельмерта или Кассиниса:
Dg1 = g – g0 + 0,3086Н. (IV.23)
Получаемая по формуле (IV.23) аномалия Dg называется аномалией в свободном воздухе, или аномалией Фая.
Следует отметить, что при введении поправки за свободный воздух влияние масс (плотностных неоднородностей), лежащих между уровнем точки наблюдения и уровнем моря, не учитывается. Однако на самом деле между уровнем наблюдения и уровнем моря залегают породы, обладающие определенной плотностью. Наличие таких пород увеличивает наблюденное значение силы тяжести, и чем выше точка отстоит от уровня моря, тем больше их влияние. Этот эффект наиболее ощутим при наблюдениях в горной местности. На равнине редукция за высоту будет постоянна.
Таким образом, аномалия в свободном воздухе отражает суммарное влияние плотностной неоднородности горных пород и влияние дополнительных масс, вызванное рельефом. Поэтому в условиях расчлененного рельефа с большим перепадом высот (порядка нескольких сотен метров) аномалия в свободном воздухе в значительной степени будет отражать топографию, в то время как гравитационный эффект плотностных неоднородностей верхних этажей геологического разреза Земли будет замаскирован. Исключение, как уже отмечалось, составляют равнинные участки с небольшими перепадами рельефа. В этих условиях аномалия в свободном воздухе может быть использована для изучения глубинной структуры.
Поправка за притяжение промежуточного слоя. Аномалия Буге. Для определения влияния плотностных неоднородностей между уровнем наблюдения и уровнем моря вычислим силу притяжения диска бесконечного радиуса и плотности r на точку Р, расположенную на некоторой высоте h от его центра (рис. 20). Как видно из рисунка, элемент массы бесконечно малого объема высотой dh равен
,
R2 = h2 + r2,
.
Откуда проекция g на ось z будет равна
. (IV.24)
Чтобы найти gz по всей массе диска, нужно проинтегрировать (IV.24):
.
В итоге получаем
,