Статья: Поток вектора через поверхность. Применение теоремы Гаусса как метод расчета полей в симметричных случаях
Для решения задач применяется выражение
= | qinside |
представляющее собой комбинацию уравнения Максвелла с теоремой Гаусса: - собственно теорема Гаусса, - уравнение Максвелла ().
Eсли - некоторый вектор, то - поток вектора через поверхность. В частности, в вышеприведенном выражении стоит поток вектора . Векторный элемент площади . Орт нормали зависит от геометрии задачи:
= | ||
Задача. Заряд q расположен в точке (0, 0, l). Найти поток вектора через круг радиуса R c центром в начале координат, лежащий в плоскости xy.
Решение: В плоскости xy зарядом создается поле
При вычислении потока нам потребуется величина , где - вектор нормали к кругу, который во всех точках ориентирован одинаково, а именно по или . Примем для определенности
Тогда, поскольку , а , имеем:
В последнем выражении сделан переход к полярным координатам: r - это расстояние от начала координат в плоскости xy. Теперь можно производить интегрирование по площади круга:
Φ | = | |
= | ||
= |
Задача. Вычислить поток вектора через сферу радиуса R.
Ответ: Φ = 4π Ra
Теорема Гаусса верна всегда (это математический закон), но помогает только в симметричных случаях, когда очевидна геометрия поля. В декартовом случае заряд должен изменяться только вдоль одной координаты (например x), в цилиндрическом - только в зависимости от удаления от оси цилиндра r, а в сферическом тоже только от r, но r - удаление от центра шара. Тогда при правильном выборе гауссовой поверхности поток вычисляется очень просто, так как параллелен вектору на части поверхности и ортогонален ему на другой её части.
Выбор гауссовой поверхности при расчете поля в точке x (или r):
- плоскостная геометрия: цилиндрическая поверхность любой формы сечения yz и любой его площади (S), занимающая область (–∞... x) вдоль оси x;
- сферическая геометрия: сфера радиуса r
- цилиндрическая геометрия: цилиндрическая поверхность круглого сечения радиуса r, имеющая произвольную длину L вдоль оси z.
= | Dr(r)· 4π r2 – сферическая геометрия | |
Dr(r)· 2π r L – цилиндрическая | ||
Dx(x) · S – Dx(–∞)· S – плоская геометрия |
Dx(–∞)≠ 0 только в некорректных задачах. При этом Dx (–∞) = –qinside(x = +∞)/2S.
Как записать qinside для разных геометрий? Если мы различаем между зарядами ρ, σ, λ, q (то есть не пытаемся всё свести к ρ, приписывая ему и бесконечные значения), то
qinside | = | |
qc - точечный заряд в центре, σi - заряды концентрических сфер радиусов Ri (таких сфер может быть произвольное количество), а интегрирует объемный заряд. Аналогично в другой геометрии: λa - заряженная нить по оси цилиндра z, σi - заряды цилиндров радиусов Ri.
Задача. Пластина ширины 2a (ее ε≈ 1) заряжена как ρ(x) = α x2; при x = 0 (центр пластины) φ = 0. Найти φ(x), применяя теорему Гаусса.
Решение: Начать следует с нахождения поля как функции координаты Ex(x). Берем гауссову поверхность в виде цилиндрической поверхности, занимающей область (–∞... x) вдоль оси x и имеющей площадь сечения S в плоскости yz.
Поскольку
мы имеем выражение теоремы Гаусса в виде
= |
В зависимости от того, в какой диапазон попадает x (x<–a, –a<x<a, x>a), левая часть дает
= | ||
= | ||
= | 0, x<–a |
Подставляя qinside в теорему Гаусса, с учетом Dx = ε0Ex получаем поле:
Теперь можно найти φ c учетом условия φ|x = 0 = 0, применяя формулу
в которой x может быть как больше, так и меньше нуля. Соответственно, для каждого из трех отрезков, на которых найдено Ex, получаем:
φ(x) | = | |
= | ||
= |
Как видим, в итоге получается тот же результат, который был ранее получен путем решения уравнения Пуассона.
Задача. Имеются две концентрические заряженные сферы (σ1, R1 и σ2, R2). Найти Er(r) и φ(r).
Решение: По теореме Гаусса,
qinside = 4π r2 Dr(r) = 4π ε0 r2 Er |
--> ЧИТАТЬ ПОЛНОСТЬЮ <--