Статья: Применение свойств функций для решения уравнений
2.1 Решить уравнение
Решение: Оценим правую и левую части уравнения:
а) , так как , а ;
б) , так как .
Оценка частей уравнения показывает, что левая часть не меньше, а правая не больше двух при любых допустимых значениях переменной x. Следовательно, данное уравнение равносильно системе
Первое уравнение системы имеет только один корень х=-2. Подставляя это значение во второе уравнение получаем верное числовое равенство:
Ответ: х=-2.
2.2 Решить уравнение
Решение: левая часть уравнения не больше двух, а правая – не меньше двух, следовательно, данное уравнение равносильно системе:
Второе уравнение в этой системе имеет единственный корень х=0. Подставляя найденное значение х в первое уравнение, получаем верное числовое равенство.
Ответ: х=0.
2.3 Решить уравнение
Решение: Оценим левую часть уравнения: , следовательно, . Получили, что в данном уравнении левая часть не больше восьми, а правая часть равна девяти при всех действительных значениях переменной х, поэтому данное уравнение не имеет корней.
Ответ: нет корней.
2.4 Решить уравнения:
а)
б)
в)
г)
д)
е)
Ответы: а) p; б) 0; в) 0; г) 0.5; д) 1; е) нет корней.
Использование монотонности функций
Этот способ основан на следующих теоретических фактах:
Если одна функция возрастает, а другая убывает на одном и том же промежутке, то графики их либо только один раз пересекутся, либо вообще не пересекутся, а это означает, что уравнение F(x)=G(x) имеет единственное решение, либо вообще не имеет решений;
Если на некотором промежутке одна из функций убывает (возрастает), а другая принимает постоянные значения, то уравнение F(x)=G(x) либо имеет единственный корень, либо не имеет корней.