Статья: Применение свойств функций для решения уравнений

В предлагаемой статье речь идет о нестандартных приемах решения уравнений, основанных на простых и хорошо известных учащимся свойствах и характеристиках функций, таких как непрерывность, монотонность наибольшее и наименьшее значение. Используя предлагаемые автором задачи и методы их решения, учитель сможет сформировать у учащихся более широкий взгляд на область применения различных этих свойств. Ведь не секрет, что в стандартном курсе школьной математики свойства функций применяются в основном для построения их графиков.

В соответствии с обязательным минимумом содержания среднего (полного) общего образования, утвержденным Министерством образования РФ (пр. №56 от 30.06.99), все учащиеся должны знать три основных метода решения уравнений:

Разложение на множители,

Замена переменных,

Использование свойств функций.

Рассмотрим на конкретных примерах сущность третьего метода. Этот метод применяется тогда, когда уравнение F(x)=G(x) в результате преобразований или замены переменных не может быть приведено к тому или иному стандартному уравнению, имеющему определенный алгоритм решения. Продемонстрируем использование некоторых свойств функций к решению уравнений указанного выше вида в случае, когда F(x) и G(x) - любые элементарные функции.

Использование области определения и области значения функций

Решить уравнение

Решение: Множество решений этого уравнения совпадает с областью определения функции . Областью определения этой функции (в соответствии с определением степени с рациональным показателем) является множество положительных действительных чисел.

Ответ: x>0.

Решить уравнение sinxctgx=cosx.

Решение: Множество решений этого уравнения совпадает с областью определения уравнения. Область определения уравнения – это общая часть областей определения функций, входящих в уравнение. Следовательно, множество решений уравнения – множество всех действительных чисел, кроме x=kp, где kÎZ.

Ответ: x¹kp, где kÎZ.

Решить уравнение .

Решение: У этого уравнения нет корней, так как область значений функции при x³1 есть множество неотрицательных чисел, а функция при всех x принимает отрицательные значения.

Решить уравнения:

а)

б)

в)

г)

д)

е)

Ответы: а) x>0, x¹1; б) êxê£1; в) x¹0; г) x³0; д) Нет корней; е) x¹0.

Использование экстремальных значений функций

Сущность этого способа решения уравнений в том, что оцениваются правая и левая части уравнения F(x)=G(x) и, если одна из функций принимает значение не меньше некоторого числа А, а другая – не больше этого же числа А, то данное уравнение заменяется системой уравнений:

Этот способ может быть применен к решению следующих уравнений:

в обеих частях уравнения стоят функции разного вида;

в одной части уравнения функция, ограниченная сверху, а в другой – ограниченная снизу;

в одной части уравнения стоит функция, ограниченная сверху или снизу, а в другой – конкретное число.

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 242
Бесплатно скачать Статья: Применение свойств функций для решения уравнений