Статья: Принцип работы маршрутизатора

После переключения сообщения модулем выбора маршрута распорядитель сообщений определяет момент отправки сообщения. Планирование отправки сообщений - и самая простая, и самая сложная функция уровня коммутации. Маршрутизаторы по большей части либо добавляют сообщение в очередь FIFO (англ. сокр. "первым пришел, первым ушел") ожидающего отправки трафика, либо, если очередь полна, просто отбрасывают их. Такой простой алгоритм довольно эффективен, но опыт управления сетями и недавние исследования показывают, что он далеко не оптимален.

В маршрутизаторе, реализующем архитектуру с интеграцией услуг IETF, алгоритмы обслуживания очередей сортируют трафик в таком порядке, чтобы данные гарантии были выполнены. Часто маршрутизаторы, не поддерживающие QoS, реализуют подобные алгоритмы в целях управления трафиком.

FIFO - первым пришел, первым ушел

Стандартные реализации очереди FIFO первыми отправляют наиболее раннее из полученных сообщений и отбрасывают все последующие, если очередь уже полна. Недавние исследования показывают, что удаление сообщений, по крайней мере для TCP/IP, имеет серьезные побочные эффекты. Например, когда сообщение потеряно, приложение-отправитель может рассматривать это как сигнал о том, что оно посылает пакеты слишком быстро. TCP реагирует на такой сигнал замедлением отправки сообщений. Но когда очередь полна, то часто несколько сообщений отбрасываются друг за другом - в результате целый ряд приложений решает замедлить передачу. После этого приложения зондируют сеть для определения ее загруженности и буквально через несколько секунд возобновляют передачу с прежним темпом, что опять приводит к перегрузке.

Случайное раннее обнаружение (Random Early Detection, RED) представляет альтернативу очередям FIFO. Оно позволяет смягчить эффект от потери трафика даже при очень больших нагрузках, так что приложения не синхронизированы друг с другом, как это имело место в предыдущем случае. Такая очередь по-прежнему использует принцип FIFO, но, вместо того чтобы отбрасывать сообщения из конца очереди, RED отбрасывает трафик статистически, когда средняя длина очереди за данный промежуток времени превосходит некоторое значение. Таким образом, заполнение очереди оптимизировано для обеспечения большей устойчивости алгоритма. Этот процесс был придуман специально для TCP, но те, кто его изобрел, считают, что он применим к любому трафику, когда сеть не гарантирует доставки.

Очередь с приоритетами - это алгоритм, при котором несколько очередей FIFO или RED образуют одну систему очередей. Трафик распределяется между данными очередями в соответствии с некоторыми заданными критериями, например в соответствии с приложением или получателем. Однако трафик отправляется в порядке строгой очередности: сначала трафик с высоким приоритетом, затем со средним и т. д. При всей простоте понимания и реализации этот алгоритм не очень хорошо работает при высоких нагрузках, потому что очереди с низким приоритетом оказываются блокированными в течение продолжительного периода времени или низкоприоритетный трафик имеет такую большую задержку в результате следования по окружному пути, что становится бесполезным.

Очереди в соответствии с классом (Class-Based Queuing, CBQ) - это алгоритм, при котором трафик делится на несколько классов. Определение класса трафика в значительной мере произвольно. Класс может представлять весь трафик через данный интерфейс, трафик определенных приложений, трафик к заданному подмножеству получателей, трафик с качеством услуг, гарантированным RSVP. Каждый класс имеет собственную очередь, и ему гарантируется, по крайней мере, некоторая доля пропускной способности канала. Если какой-либо класс не исчерпывает предоставленный ему лимит пропускной способности, то остальные классы увеличивают свою долю пропорциональным образом.

Взвешенная справедливая очередь (Weighted Fair Queuing, WFQ) является частным случаем CBQ, когда отдельному классу соответствуют независимые потоки. Как и в случае CBQ, каждому классу WFQ соответствует одна очередь FIFO и гарантируется некоторая часть пропускной способности канала. Если некоторые потоки используют предоставленную им пропускную способность не полностью, то другие потоки увеличивают свою долю соответственно. Так как каждый класс - это отдельный поток, то гарантия пропускной способности эквивалентна в данном случае гарантии максимальной задержки. Зная параметры сообщения, вы можете по известной формуле вычислить его максимальную задержку при передаче по сети. Выделение дополнительной пропускной способности позволяет уменьшить максимальную задержку.

Входные и выходные драйверы - это программы и чипы для приема и отправки сообщений из системы. Вообще говоря, они могут рассматриваться естественным образом в рамках протоколов сетевого уровня. Однако протоколы маршрутизации должны учитывать топологические соображения. По этой причине они рассматривают классы компонентов канального уровня по-иному. Обычно компоненты канального уровня характеризуются такими терминами, как локальные сети, каналы точка-точка, сети множественного доступа с виртуальными соединениями, каналы нерегулярного доступа и коммутируемые каналы.

Локальная сеть, вероятно, наиболее известный для сообщества Internet компонент канального уровня. Примерами могут служить сети Ethernet, Token Ring, FDDI и (несколько парадоксально) Switched Multimegabit Data Service. Предназначение локальных сетей не в обеспечении высокой загруженности, а в обеспечении высокой доступности; в результате, когда локальная сеть загружена, ее производительность менее предсказуема и далека от оптимальной. Локальную сеть можно реализовать, используя различные комбинации кабеля, концентраторов и коммутаторов. Но системы в них - как хосты, так и маршрутизаторы - имеют целый ряд общих характеристик. Если вы не занимаетесь написанием драйверов, то тогда отношение к локальной сети как средству предоставления высокодоступных сервисов некоторому множеству систем с заданной скоростью, вполне достаточно.

Каждая система имеет MAC-адрес, идентифицирующий систему в пределах данной сети. Когда какая-либо система отправляет сообщение, адрес сетевого уровня системы-получателя должен быть переведен сначала в MAC-адрес. Как это делается, зависит от протокола: в NetWare МАС-адрес является частью адреса сетевого уровня, в то время как в AppleTalk и IP протокол определения адреса запрашивает системы об их адресах для установления соответствия между адресами канального и сетевого уровня.

Ввиду необходимости такой трансляции каждой системе в локальной сети необходим уникальный адрес сетевого уровня, благодаря которому сообщение может быть доставлено ей по сети; адрес должен содержать достаточную топологическую информацию (обычно в виде номера сети или префикса адреса), чтобы маршрутизаторы знали, куда направлять сообщение. Подобная система идентификации позволяет последнему маршрутизатору передать сообщение непосредственно системе-получателю.

Организация очередей в локальных сетях сопряжена с определенными трудностями, так как системы не знают о поведении своих соседей. Протоколы локальных сетей имеют механизмы, с помощью которых системы могут договариваться об использовании среды передачи для каждого конкретного сообщения. Это согласование осуществляется обычно посредством обнаружения коллизий или передачи маркера. Такой процесс отнимает иногда немало времени, однако ввиду высокой пропускной способности длинные очереди для локальной сети не характерны.

Каналы точка-точка, например PPP или HSSI, представляют полную противоположность локальным сетям, поскольку здесь мы имеем дело только с двумя участниками. Некоторые архитектуры маршрутизации рассматривают их как внутренние интерфейсы между двумя половинками маршрутизатора, в то время как другие - как вырожденный случай локальной сети.

Такие каналы обычно не имеют адресов, потому что маршрутизаторы с обоих концов могут идентифицировать друг друга непосредственно, не беспокоясь о формальном имени. Данная конфигурация имеет определенные достоинства при распределении адресов: нет нужды присваивать каналу номер сети. Кроме того, преобразование адресов производить тоже не надо.

В конфигурации точка-точка очередь, кроме того, проще организовать, так как незачем договариваться об использовании канала. Таким образом, система полностью контролирует характеристики трафика.

Каналы нерегулярного доступа, наподобие асинхронных коммутируемых или ISDN-каналов, во многом напоминают каналы точка-точка, за одним важным исключением. Если прямой канал недоступен, то пользоваться им невозможно, пока он не будет восстановлен. Поэтому маршрутизаторы обмениваются друг с другом сообщениями для нахождения обходного пути по сети. Однако если канал нерегулярного доступа не функционирует в данный момент, то он может быть сделан доступным посредством звонка. При таком сценарии маршрутизаторы исходят из предположения, что канал задействуется по требованию, и при определении топологии они рассматривают такой канал как доступный. Это в какой-то степени фикция (недоступный канал считается доступным), которая требует некоторых изменений в протоколах маршрутизации.

Сети множественного доступа с виртуальными соединениями (называемые также нешироковещательными сетями множественного доступа, или NBMA) включают X.25, frame relay и ATM. С точки зрения маршрутизаторов, сети с виртуальными соединениями рассматриваются обычно как локальные сети или совокупность интерфейсов точка-точка. Они схожи с локальными сетями в том, что каждая система имеет в них свой адрес, однако этот адрес соответствует виртуальному соединению, а не системе или интерфейсу. Если два виртуальных соединения соединяют одну и ту же пару маршрутизаторов, то каждое из них имеет свой адрес. Виртуальные сети схожи и с каналами точка-точка: например, система обладает полным контролем над очередями; более того, источником передаваемых по виртуальному соединению данных может быть только один из участников. Участник известен как "тот, кто использует виртуальное соединение", а стало быть, адреса интерфейсов попросту не нужны.

С точки зрения маршрутизации, сети на канальном уровне следует рассматривать с осторожностью. Проблемы с маршрутизацией возникают, например, когда сеть множественного доступа с виртуальными соединениями рассматривается как локальная сеть. Потеря магистрали - общего пути для нескольких виртуальных соединений - в сети frame relay может привести к тому, что протоколы маршрутизации (в особенности это касается OSPF) потеряют связь со всеми коллегами, хотя, тем не менее, они и будут иметь возможность обмениваться сообщениями. По этой причине такие сети лучше представлять как совокупность ненумерованных каналов точка-точка.

Имея представление о вышеперечисленных компонентах современного маршрутизатора, вы можете со знанием дела приобретать, развертывать, использовать и обслуживать вашу сеть

Тип соединения

Большинство маршрутизаторов оборудованы портом 10BaseT Ethernet для подключения к широкополосному модему. Почему не 10/100? Просто потому, что большинство соединений работают на скорости 1-2 Мбит/с, в лучшем случае, поэтому производители могут немного сэкономить, используя чип на 10BaseT. Некоторые модели оборудованы последовательным портом для WAN-соединения, что позволяет использовать их совместно с обычными модемами (для коммутируемых линий) или соответствующими модемами для выделенных линий (или ISDN-адаптерами). Некоторые модели поддерживают функцию автоматического установления резервного модемного соединения "auto-failover" при разрыве основного подключения и автоматическое переключение обратно при восстановлении последнего.

Получение параметров IP

Когда маршрутизатор уже приобретён и подключён к линии, нужно ещё раз убедиться, что он поддерживает метод получения IP-адреса и тип аутентификации, используемые провайдером. Сначала обратимся к способам задания IP-адреса, которые есть у всех устройств, затем рассмотрим методы аутентификации.

Динамический IP-адрес (Dynamic IP)

В этом способе, который также называют "DHCP-клиент", маршрутизатор автоматически получает свой IP-адрес, адреса шлюза по умолчанию и сервера DNS. Подобный способ достаточно широко распространён - он предоставляет провайдеру достаточную гибкость при конфигурировании своей сети. Негативная сторона заключается в том, что полученный IP-адрес может смениться в любой момент, и удалённые приложения, работающие на основе IP-адресов, не смогут работать. К счастью, решить эту проблему помогают провайдеры динамического DNS, например TZO, которые позволяют найти вас по имени независимо от текущего IP-адреса.

Статический IP-адрес (Static IP)

Этот метод идеально подходит для тех, кто собирается использовать серверы и не желает связываться с динамическим DNS. Здесь требуется самостоятельно указать IP-адрес, адрес шлюза по умолчанию и адрес сервера DNS, предоставленные провайдером. Такой вариант предоставляют не все провайдеры, а те, которые предоставляют, могут взимать за это дополнительную плату.

Методы аутентификации

Вообще, у провайдеров существует множество способов для проверки подлинности пользователей. Мы рассмотрим наиболее распространённые из них.

Коммутируемый доступ и ISDN

Пользователи этих двух способов, вероятно, заметили, что в маршрутизаторах с последовательным портом в разделе настройки удалённого доступа есть также место для указания номера телефона провайдера, имени пользователя и пароля.

По MAC-адресу

Все устройства, обладающие IP-адресом, имеют и MAC-адрес. MAC-адреса уникальны для любого сетевого оборудования (по крайней мере, предполагается, что они уникальны) и используются в процессе присвоения IP-адресов. MAC-адреса (также известные как адреса физические) состоят из двенадцати шестнадцатиразрядных цифр (то есть, шести байт). Чтобы обеспечить уникальность MAC-адресов, каждому производителю сетевого оборудования выделяется свой диапазон, а конкретный адрес в рамках диапазона присваивается случайным образом.

Примечание: MAC-адрес может быть записан в одном из трёх видов. Ниже приведены три варианта записи одного и того же MAC адреса:

· 00fe3c812eab

· 00-fe-3c-81-2e-ab

К-во Просмотров: 185
Бесплатно скачать Статья: Принцип работы маршрутизатора