Статья: Проекция инвариантной меры с орбиты коприсоединенного представления на подалгебру Картана

Точное выражение для функции в дальнейшем не требуется, нам достаточно знать, что это положительная, финитная, кусочно-непрерывная функция.

3. Функция

В этом разделе мы определим функцию , через которую выражается функция , а также укажем некоторые ее свойства.

В дальнейшем мы будем использовать следующие обозначения: d - ранг алгебры, т.е. размерность подалгебры Картана , s - число положительных корней, r - разность s-d, которая строго больше нуля для всех алгебр Ли (кроме алгебры A1). Для того чтобы определить , мы рассмотрим систему положительных корней как проекцию набора из s попарно ортогональных векторов. Остановимся на этом более подробно.

Пусть , где - векторное пространство, порожденное , т.е. линейная оболочка множества , . Рассмотрим некоторое векторное пространство L, в которое вложено как подпространство векторов, имеющих ненулевыми первые d координат. Имеется естественная ортогональная проекция . Нетрудно проверить, что если выбрать подходящую (достаточно большую) размерность пространства L, то в L можно найти набор из s векторов таких, что (ei,ej)=0, если и, кроме того, . Пространство V - линейная оболочка векторов , которые образуют в нем ортогональный базис. Введем следующее обозначение:

V+ - это конус в пространстве V, порожденный векторами . Определим на функцию следующим образом:

где mes - мера Лебега на .

Замечание. В случае алгебры Ли A1 множество 0-мерно. В этом случае можно считать, что функция имеет следующий вид:

Функция определена всюду в , непрерывна, кусочно-полиномиальна и определяется алгеброй с точностью до пропорциональности, т.е. при выборе другого базиса функция лишь умножается на константу.

Можно рассматривать функцию как непрерывное продолжение дискретной функции Костанта. Функция Костанта , где - решетка корней алгебры; - это число способов представить в виде суммы положительных корней, Q(0)=1. Пусть - решетка в V. Тогда равно числу элементов в множестве , а - это мера или объем . Для примера функция Костанта и функция для алгебры Ли A2 связаны следующим образом: , . Формула Костанта для кратностей весов в неприводимом представлении со старшим весом такова:

4. Основной результат

Теорема. Пусть . Тогда проекция инвариантной меры с орбиты коприсоединенного представления, проходящей через точку , имеет плотность :

Кроме того, функция является непрерывной, кусочно-полиномиальной, инвариантной относительно действия группы Вейля функцией, носитель которой содержится в множестве .

НАБРОСОК ДОКАЗАТЕЛЬСТВА. Докажем равенство (*) для . Сечение орбиты , проходящее через точку , имеет размерность r, поэтому . Таким образом, мы получаем:

Для вычисления используется формула Костанта для кратностей весов. Если , то

Затем обе части равенства умножаются на непрерывную финитную функцию , интегрируются по и, наконец, n устремляется к бесконечности (при этом сумма в правой части рассматривается как интегральная сумма). После некоторых преобразований получается следующее равенство:

Так как это верно для любой непрерывной функции , то получаем (*) для всех После этого, используя однородность функции , (*), доказывается для всех , , где , , а затем, используя предельный переход, и для всех . Непрерывность и кусочно-полиномиальность следуют из соответствующих свойств функции .

Докажем инвариантность относительно действия группы Вейля, т.е. равенство . Так как для функции j(X) выполнено равенство j(wX)=j(X), то верно и . Далее, если , то

Затем равенство доказывается для всех . Из равенства (*) легко получить, что . Так как функция -инвариантна, то .

Список литературы

К-во Просмотров: 164
Бесплатно скачать Статья: Проекция инвариантной меры с орбиты коприсоединенного представления на подалгебру Картана