Статья: Решение геоэкологических проблем с помощью нестандартных геофизических методов
В рассказах людей, путешествовавших по пустыням, часто упоминается такая загадка природы как зыбучие пески. Ровная поверхность песка при любом на нее механическом воздействии вдруг превращается в уходящую вглубь воронку, засасывая несчастного путника, верблюда, а то и автомобиль. Однако оказалось, что подобные явления не редкость и за пределами пустынь. Правда, губительное действие воронок при этом не столь стремительно. Но столь же неотвратимо.
До сих пор встречаются на Земле некоторые таинственные места, в которых с инженерными сооружениями, а порою, и с людьми время от времени происходят неожиданные события.
Одно из таких событий заключается в том, что при осуществлении разведочного бурения выход керна в некоторых скважинах оказывается существенно ниже, чем это принято известными нормативами. Так, в ходе разведочного бурения при проведении инженерно-геологических изысканий по трассе петербургского (тогда еще ленинградского) метрополитена выход керна в скважине N 118 по Политехнической ул., пробуренной объединением "Севзапгеология" в 1970 г на глубину 120 м, практически отсутствовал. То есть породы в этой точке бурения были в столь нарушенном состоянии, что извлечь их в сколько-нибудь оформленном виде оказалось невозможно. Это при том, что в остальных скважинах, выполненных по этой трассе, выход керна был не менее 60%, что соответствует нормативам. Согласно существующим правилам, если выход керна уменьшается, то это свидетельствует исключительно о некачественном бурении. Поэтому когда такое происходит, то в отчетных документах этот факт отсутствует. А заинтересовал он нас потому, что именно в зоне, где не удалось при бурении извлечь породы, в дальнейшем, в 1995 году произошла разгерметизация тоннелей. То есть та самая авария, из-за которой до сих пор между соседними станциями метро "Лесная" и "пл. Мужества" приходится ездить наземным транспортом. Было ли это случайным совпадением, или эти два момента имели причинно-следственные связи, тогда нам было еще непонятно.
Не проходит недели, чтобы в Мире не происходили внезапные разрушения домов. Одно из последних крупных событий подобного рода – это унесшее много человеческих жизней разрушение Дворца Торжеств в Иерусалиме. Как и в случае описанной в предыдущем параграфе аварии на метрополитене, причина разрушения осталась неизвестной. Однако наличие человеческих жертв требует хотя бы формальной ясности причин, и поэтому работавшая там комиссия представила случившееся как результат недоработок при строительстве. Как показывает опыт, практически все случаи внезапных разрушений соответствующие комиссии объясняют либо применением некачественного строительного материала, либо нарушением технологии при строительстве, либо неправильной эксплуатацией этого сооружения.
И все же, пусть и очень редко, но происходят внезапные разрушения, которые не удается объяснить перечисленными выше причинами. Так, в 1903 году в Канаде, внезапно разрушился Трансконский элеватор. Собственно, даже не разрушился, а просто в течение 23 часов элеватор, имеющий размеры в плане 23,5x58 м и установленный для устойчивости на железобетонной плите метровой толщины, практически лег набок. Один угол элеватора при этом ушел в грунт на 8 метров, а противоположный поднялся вверх на 3 метра. Комиссия, занимавшаяся расследованием этого события, первым делом установила, что зерно засыпалось в элеватор равномерно, и, следовательно, авария произошла не из-за неправильной его эксплуатации. В результате бурения, проводившегося при инженерно-геологических изысканиях перед строительством элеватора, было известно, что грунт был представлен плотными глинами 20-метровой толщины, ниже которых залегает известняк. Повторное бурение, выполненное непосредственно после аварии, показало, что в зоне опускания одного из углов элеватора грунт был представлен не плотными, а весьма податливыми, пластичными глинами, под которыми залегает карст.
Что это было: некачественное бурение при инженерно-геологических изысканиях, в результате чего осталась незамеченной зона пониженной несущей способности грунта или состояние грунта изменилось в процессе строительства элеватора и его эксплуатации?
О том, что несущая способность грунта может уменьшаться со временем, свидетельствуют многочисленные случаи аварий на трубопроводах. Мало того, что количество этих аварий чрезвычайно велико (по данным экологов, в течение года количество аварий на различных трубопроводах в России составляет примерно 80 тысяч), но многие из них происходят повторно в одном и том же месте, и при этом, там, где при инженерно-геологических изысканиях грунт характеризовался достаточной прочностью, после аварии, при повторном бурении – существенно меньшей.
Известно, что аварии на трубопроводах всегда объясняют недостаточным качеством самих труб. Но тогда возникает следующий вопрос. Ведь после ремонта прочность трубы в месте ремонта должна быть безусловно выше, чем на соседних участках. Тогда почему же повторная авария происходит именно в том же месте, а не рядом?
В пользу того, что причина внезапных разрушений сооружений как-то связана с наличием участков с пониженной, и я бы сказал, что с хронически пониженной несущей способностью грунта, по-видимому, обусловленной каким-то специфическим геологическим строением, свидетельствует также еще тот факт, что прогиб рельс на железных дорогах происходит, как правило, на одних и тех же участках. Ремонт участка пути сопровождается дополнительным уплотнением грунта, но, несмотря на это, спустя некоторое время, именно этот участок опять начинает требовать такого же ремонта.
И, наконец, о здоровье людей. Как показывает опыт, существуют некие зоны, проживание в пределах которых характеризуется повышенной заболеваемостью. В работе /1/ приведены статистические данные, полученные при наблюдении за здоровьем людей в домах расположенных вдоль Гражданского проспекта Петербурга. При этом оказалось, что в некоторых зонах этого микрорайона наблюдается существенное увеличение количества заболевших онкологическими и сердечно-сосудистыми заболеваниями, а также уменьшение длительности жизни. Эти зоны называются геопатогенными, и в работе /2/ приведены доказательства того, что наличие их обусловлено каким-то специфическим геологическим строением.
Как показали инженерно-геофизические исследования, выполненные с помощью альтернативной сейсморазведки - метода спектрально-сейсморазведочного профилирования (ССП), природа зон, в которых следует ожидать внезапных разрушений инженерных сооружений, аварий на трубопроводах, прогиба рельсовых путей, а также наличия геопатогенности, одна и та же. При этом оказалось, что формирование этих зон происходит на очень больших глубинах. Поэтому, несмотря на то, что метод ССП применяется уже более 5 лет, для строителей до сих пор очень трудно воспользоваться его результатами.
Дело в том, что, согласно азам строительной науки, на надежность инженерных сооружений влияют прочностные характеристики грунта на глубинах, не превышающих 10¸15 м. Именно по этой причине, кстати, авария на Трансконском элеваторе никак не связывалась с наличием под ним карста: ведь он находился на глубинах, превышающих 20м.
Прежде чем прийти к мнению об ошибочности этого основополагающего постулата строительной науки, мы исследовали его истоки.
Согласно существующим представлениям, горные породы вообще, и грунт, в частности, обладают упругостью. Как следствие этого допущения, влияние инженерных сооружений на находящиеся под ним породы должно уменьшаться с глубиной, и особенно, на фоне возрастающего с глубиной горного давления. В самом деле, если нагрузить упругую (например, стальную) плиту, то прогиб ее будет тем меньше, чем больше толщина этой плиты. Расчеты показывают, что при средних прочностных характеристиках грунта и при средних размерах (а стало быть, и весе) сооружения предельная глубина влияния не должна превышать эти самые 10¸15м.
Но в том-то и дело, что никакими экспериментами подтвердить наличие упругости горных пород нельзя. Это в достаточной степени описано в работе /3/. Упругость предполагает обратимость возникающих деформаций. Однако, как оказалось, при нагружении образцов горных пород деформации возникают вследствие накопления микронарушенности. При снятии нагрузок с образца микронарушенность материала уже не уменьшится, а следовательно, форма и размеры его не возвращаются к исходным. Плита из горной породы при ее нагружении если и изгибается, то за счет накопления микронарушенности. А следовательно, с увеличением толщины (или, как говорят геологи, мощности) породной плиты не прогиб ее уменьшится, а всего лишь уменьшится скорость накопления микронарушенности. То есть скорость ее разрушения. А это значит, что на какой бы глубине ни находился карст, он рано или поздно все равно начнет оказывать влияние на инженерное сооружение.
Как показали результаты использования метода ССП в различных геологических условиях, формирование потенциально опасных зон определяется не только карстами.
Как показано в работе /3/, применение ССП позволяет определять свойства горных пород, которые другими методами определены быть не могут. А именно, выявлять области, зоны, поверхности, характеризуемые повышенной микронарушенностью.
Одной из неизбежно существующих поверхностей, характеризуемых повышенной микронарушенностью, является поверхность раздела между осадочными породами и породами кристаллического фундамента. Повышенная микронарушенность этих поверхностей обусловлена отсутствием взаимного проникновения осадочных и кристаллических пород. Поэтому применение метода ССП позволяет выявить эту границу, а также те участки, где вследствие наличия разрывного тектонического нарушения раздел между осадочными и кристаллическими породами существует в виде не конкретной границы, а некоторой зоны.
На рис. 1 приведен ССП-разрез, полученный при профилировании в условиях малой мощности осадочных пород, под Выборгом (Ленинградская область). Согласно существующей геологической информации, мощность осадочного чехла в этом регионе может составлять от 0 до 100 м. Кристаллические породы фундамента представлены гранитом.
Каждый вертикальный объект на ССП-разрезе представляет собой спектральное изображение сейсмосигнала. Ось частот показана справа от ССП-разреза. Ось глубин находится слева и связана с осью частот соотношением
при Vсдв=2500 м/с. Величины раздувов на каждом вертикальном объекте пропорциональны плотности спектра. Шаг профилирования – 10м.
Рассмотрение ССП-разреза необходимо предварить следующим замечанием. ССП-разрез представляет собой изображение совокупности спектральных изображений сейсмосигналов, получаемых при профилировании. То есть, фактически, является изображением первичной информации, не измененной какой бы то ни было интерпретацией. За счет этого, при построении ССП-разреза полностью отсутствует субъективный фактор. Но, с другой стороны, при прочтении ССП-разреза необходим некоторый навык. В этом смысле ССП-разрез можно сравнить с изображением на экране рентгеновского аппарата. В связи с этим, для упрощения восприятия, на ССП-разрезах, представленных далее, некоторые геологические объекты будут средствами графики помечены либо выделены.
На ССП-разрезе, представленном на рис. 1, прослеживается кровля кристаллического фундамента, сложенного гранитами. Граница между породами кристаллического фундамента и осадочного чехла помечена белой штриховой линией.
На западном краю профиля (0-50м) мощность осадочных пород составляет примерно 40м, а на восточном (110 - 170м) - 70м. На участке профиля 60 - 100 м выявлено разрывное тектоническое нарушение - сброс амплитудой 30м. В зоне тектонического нарушения кровля гранита не прослеживается, так как гранит в этой зоне характеризуется блочной нарушенностью. Область блочной нарушенности выделена черными штриховыми линиями.
Рис. 1
На участке профиля 110 - 170 м в граните на глубине около 130 м видна граница, природа которой нам неизвестна. В принципе, такого же рода границы возникают, когда в кристаллических породах залегают массивные рудные тела.
В данном случае метод ССП использовался для поисков месторождения воды, и скважина, пробуренная на 80-м метре профиля, с глубины 40м дала воду с дебетом около 100м3 в сутки.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--