Статья: Школьный учебник математики: вчера, сегодня, завтра
Жалобы Гурьева были вполне основательными: трудно было ждать издания учебников от режима, который был против школ, против образования.
"Ему, — продолжает П. С. — чуждому педагогических знаний, дают в руки сжатую краткую книгу и велят учить по ней с непременным условием, чтобы всё, неясно изложенное и недосказанное в ней, он дополнил собственным опытом и наблюдениями. Но какой опытности можно ожидать от него, когда он сам только что вступил на педагогическое поприще?"
Методику арифметики Гурьев рассматривает как науку, как "Знание, основанное на точных положительных началах" (стр. VI). Строя методику преподавания, автор пытается установить путь формирования знаний. "Всякое знание человека начинается с чувственного и частного и только постепенно, посредством отвлечения и соединения переходит к общим законам и правилам; в каждой части сообщаемого материала должна проявляться идея самой науки, а полнота и совершенство этой идеи всегда находится в прямом отношении с массою сведений".
Философско-теоретические обоснования, которые он даёт науке преподавания, рисуют его как передового педагога своей эпохи. "Наука при своём источнике бывает в тесной связи с жизнью, она отделяется от жизни и входит в область отвлечённого не вдруг, а с наивозможною постепенностью".
Отсюда автор делает заключение о необходимости концентрического расположения материала при изучении арифметики, о переходе к отвлечённому материалу только тогда, когда ученик уже обогащен фактами. Вспомним, что в это время немецкая педагогика, а вслед за нею и методика арифметики тонули в "теории формальных ступеней", изобретая такое расчленение курса, которое могло появиться лишь на основе путаной идеалистической гносеологии.
В Германии к концентрическому расположению материала подошёл А. Дистервег, но его система была вскоре вытеснена "измышлениями" Грубе.
У нас этот вопрос был поставлен Ф. И. Буссе и более подробно разработан П. С. Гурьевым. Последний выделяет два концентра: десяток и сотню. "Всякая наука, — говорит П. С. Гурьев, —подчинена двум требованиям. Она должна представлять собою, во-первых, отдельную совокупность знаний, полезных в общежитии; во-вторых, непрерывный ряд идей, ведущих к познанию истины и в то же время служащих к развитию душевных сил". Это даёт право автору со всей категоричностью утверждать, что механические приёмы не должны иметь места в преподавании. П. С. Гурьев решительно порывает с догматизмом старой школы.
"Неопытному преподавателю, — пишет он, — недостаточно говорить намёками или отрицательным образом, нет! Ему надобно указать на все трудности обучаемого предмета, раскрыть положительно, как он должен поступать в самомалейших случаях: короче, надо представить ему весь ход дела в виде лестницы, в которой, очевидно, чем ниже и шире ступени, тем легче взойти по ней наверх".
П. С. Гурьев придаёт очень большое значение задачам. Он считает, что задачи должны доставлять детям удовольствие, возбуждать в них интерес к арифметике, развивать мышление. Его задачи отличаются конкретностью содержания, близки к жизни, естественны и интересны. Особо выделяется им решение устных задач.
Последняя работа П. С. Гурьева "Практическая арифметика" вышла в 1861 г. Его идеи жили в русской школе до 70-х годов. В конце 60-х годов П. С. Гурьев занялся земской деятельностью, состоял гласным Новгородского уездного земства, где с особенной любовью занимался вопросами народного образования. Умер П. С. Гурьев в 1887 г.
Имя П. С. Гурьева, талантливого творца первой научной методики начального курса арифметики, незаслуженно забыто. Многие страницы его "Руководства" читаются с таким интересом, как будто написаны в последние десятилетия. Его основной тезис "методика есть наука" получил права гражданства лишь в недавние годы. Его принципиальные положения — сознательность обучения, самодеятельность учащихся и жизненность материала — далеко опередили своё время.
110 лет прошло со времени выхода "Руководства" П. С. Гурьева. Его неоспоримая заслуга в том, что он заложил прочное основание нашей методики арифметики, настолько прочное, что блестящий авторитет и талантливость представителя школы Грубе в России В. А. Евтушевского лишь поколебали это основание, но не могли его разрушить.
П. С. Гурьев всю жизнь занимался математикой и методикой арифметики, но это не узкий "частный методист", а широко образованный педагог, начавший строить здание методики арифметики на базе передовых идей педагогики и психологии, которые потом так замечательно расцвели в творчестве К. Д. Ушинского. В этом причина его успеха, залог прочности основания, которое он заложил.
Деятельность и творчество П. С. Гурьева — одна из поучительнейших страниц русской методики арифметики.
Список литературы
1. Ф. И. Буссе, Руководство к преподаванию арифметики для учителей, 1831.
2. П. С. Гурьев, Арифметические листки, постепенно расположенные от легчайшего к труднейшему, 1832.
3. Его же, Ключ к арифметическим листкам, 1833.
4. Его же, Руководство к преподаванию арифметики малолетним детям, 1839-1842.
5. П. С. Гурьев и А. Дмитриев, Практические упражнения в геометрии или собрание геометрических вопросов и задач с ответами и решениями, 1844.
6. П. С. Гурьев, Практическая арифметика, 1861.
7. Его же, Очерк истории Гатчинского сиротского института, 1854.
8. Его же, Мысли о воспитании, "Русский педагогический вестник", т. I, 1857.
9. Его же, Ещё о воспитании, "Морской сборник", т. XXVIII, 1857.
10. "Педагогический журнал", ?