Статья: Симметрия и принципы инвариантности в физике
где внизу, в скобках, написаны размерности представлений (т.е. числа базисных функций).
Если обозначить базисные функции представления Г через Г (где индекс нумерует базисные функции), то результат действия операции G группы на базисную функцию можно записать в виде:
где f - размерность представления Г . Представления группы фактически образуют матрицы D(Г )(g) , ибо, как можно легко показать, они имеют тот же закон умножения, что и элементы группы g, которые они представляют. Каждой группе принадлежит бесконечно много представлений, однако число неприводимых представлений всегда равно числу классов. Например, группа O включает 5 классов: E, 6C 42, 6C 2, 8C 3 и, следовательно, имеет 5 неприводимых представлений, которые обозначают Г 1, Г 2, Г 3, Г 4, Г 5 .
Неприводимые представления групп симметрии играют важнейшую роль в квантовой физике. Решение уравнения Шредингера для стационарного случая
( 2 )
H =E
(где H- оператор Гамильтона, - волновая функция системы, E- значение полной энергии) при определенных граничных условиях приводит к набору разрешенных значений энергии (энергетическому спектру) и волновых функций.
В случае существования нескольких линейно независимых волновых функций для одного и того же энергетического уровня говорят о вырождении этого уровня, а число независимых волновых функций (состояний), принадлежащих этому уровню, называют кратностью вырождения. Если уравнение (2) инвариантно относительно преобразований некоторой группы симметрии G H , то волновые функции, являющиеся решениями этого уравнения и принадлежащие одному энергетическому уровню, будут обязательно составлять базис неприводимого представления группы G H . Это утверждение составляет содержание теоремы Вигнера, имеющей, правда, оговорку о случайных вырождениях, на которой мы останавливаться не будем.
Отсюда следует, что энергетические уровни квантовой системы можно классифицировать по неприводимым представлениям группы симметрии. Иными словами, симметрия вызывает объединение квантовых состояний в группы (мультиплеты), относящиеся к энергетическим уровням, каждый из которых характеризуется неприводимым представлением группы симметрии.
Использование представлений групп симметрии позволяет очень просто устанавливать так называемые правила отбора для квантовых переходов между энергетическими уровнями под действием разного рода нестационарных возмущений (напр., под действием света), что очень важно для оптической спектроскопии. Кроме того, применение представлений групп симметрии существенно облегчает рассмотрение влияний стационарных внешних воздействий (электрических, магнитных полей, механических напряжений и т.д.), к примеру, на оптические спектры квантовых систем. Дело в том, что "включение" внешнего воздействия изменяет симметрию задачи (обычно симметрия понижается от группы G H до одной из ее подгрупп G' ). Между тем, представление Г, неприводимое в группе GH , может стать приводимым в подгруппе G':
(3)
Г=∑j cjГj ,
что означает расщепление энергетического уровня типа Г на ряд подуровней, характеризуемых неприводимыми представлениями Г j группы G'. Это влечет за собой расщепление соответствующих линий, полос в оптическом спектре (так называемые эффекты Штарка, Зеемана, пьезоспектроскопические явления и т.д.). Проводя разложение (3), мы сразу узнаем, на сколько подуровней и какого типа расщепится данный уровень. Соответствующие разложения легко проводятся с использованием таблиц характеров неприводимых представлений групп симметрии (см. [7-9]).
3. Негеометрические виды симметрии
Физические законы могут обладать свойствами симметрии иного рода, нежели рассмотренные выше. Например, в квантовой теории важную роль играет так называемая перестановочная симметрия, т.е. инвариантность уравнения Шредингера относительно перестановок одинаковых частиц 4 . Важнейшим следствием перестановочной симметрии является существование двух классов частиц: бозонов и фермионов, существенно различающихся по своим свойствам. К первым относятся частицы с целым спином (в единицах h=h/(2) , где h- постоянная Планка), а ко вторым - с полуцелым.
Волновые функции двух состояний системы частиц, различающихся перестановкой P одинаковых частиц, физически эквивалентны, т.е. функции и P могут отличаться только несущественным фазовым множителем:
(4)
P=exp(i) .
Отсюда, с одной стороны, P2=exp(2i) , а с другой - P2=1, т.е. exp(2i)=1. Тогда exp(i)=1, и (4) запишется:
P = .
Следовательно, волновая функция системы одинаковых частиц должна быть симметричной P =+ (бозоны) или антисимметричной P=- (фермионы).
Выдающийся швейцарский физик-теоретик Вольфганг Паули (1900-1958) установил связь перестановочной симметрии со спином частиц: частицы с целым спином - бозоны, а с полуцелым - фермионы. Он же показал, что фермионы должны подчиняться принципу запрета (широко известному сейчас как принцип Паули): два фермиона не могут находиться в одном и том же состоянии. Очевидно, что перестановка фермионов в одном и том же состоянии не меняла бы волновую функцию P= , но, с другой стороны, ввиду антисимметричности волновой функции системы фермионов P=- . Следовательно, =-=0, т.е. такие состояния не могут существовать.
Принцип Паули, как известно, служит ключом к объяснению периодического закона Д.И. Менделеева. Если бы не выполнялся принцип Паули, то все электроны любого атома перешли бы в наинизшее по энергии 1s-состояние, что привело бы к потере того разнообразия химических свойств атомов, которое наблюдается в природе. Это как нельзя лучше иллюстрирует важное значение перестановочной симметрии.
К не менее значимому виду симметрии можно отнести калибровочную симметрию уравнений электродинамики и релятивистской квантовой механики (уравнений Дирака). Суть ее заключается в следующем: если умножение волновой функции на постоянный фазовый множитель exp(i) не меняет уравнение Дирака, то умножение ее на переменный фазовый множитель exp(i(x,y,z,t)) (так называемое локальное калибровочное преобразование) приводит к его изменению. В уравнении появляются дополнительные слагаемые, происходящие от дифференцирования (x,y,z,t) по координатам и времени. Если, однако, постулировать принцип локальной калибровочной инвариантности, то можно скомпенсировать дополнительные слагаемые, вводя взаимодействие с некоторым векторным полем. Последнее по своим свойствам оказывается тождественным электромагнитному полю, которое подчиняется уравнениям Дж. Максвелла. Получается, что уравнения Максвелла можно вывести из принципа локальной калибровочной симметрии! Поэтому электромагнитное поле можно назвать калибровочным полем для электронов. Кванты этого поля (фотоны) являются переносчиками электромагнитного взаимодействия между электронами. Они, как известно, имеют спин, равный 1 (в единицах h ) и массу покоя, равную 0. Эти два свойства присущи любым калибровочным полям (см. ниже).
Китайский физик Ч.Янг и американец Р. Миллс попытались распространить принцип локальной калибровочной инвариантности на сильные взаимодействия. Для сильных взаимодействий адронов5 еще в 30-х гг. была установлена глобальная изотопическая инвариантность, основанием для которой послужила возможность объединить часть адронов в семейства "похожих" частиц. Частицы каждого семейства имеют одинаковые внутренние характеристики: спин, четность, барионный заряд, странность, очарование, красоту (исключая электрический заряд) и примерно одинаковые массы. Такие семейства адронов называют изомультиплеты. Наиболее известные из них - изодублет барионов: протон-нейтрон n,p и изотриплет мезонов: +,o,- .
Если вспомнить о релятивистской связи между энергией и массой E=mc2 , то частицы одинаковой массы, сходные по своим свойствам с точки зрения сильных взаимодействий, можно рассматривать как одну частицу, находящуюся в разных квантовых состояниях (но с одной и той же энергией). Следовательно, по теореме Вигнера, эти частицы можно отнести к определенному неприводимому представлению группы симметрии сильных взаимодействий. Проблема состоит в том, чтобы правильно определить эту группу симметрии.
Подобно тому, как для атома из двух базисных состояний спина s=1/2 с проекцией спина на выделенное направление ms=1/2 , можно путем векторного сложения спинов построить спиновые мультиплеты с квантовым числом полного спина S=0,1/2,1,3/2,2...(соответственно с мультиплетностью 2S+1=1,2,3,4,5...), возможные изомультиплеты нестранных адронов могут быть найдены из двух базисных состояний u и d с проекциями изоспина mT=1/2 соответственно. Эти изомультиплеты характеризуются квантовым числом полного изоспина T и его (2T+1)-й проекциями mT= =T,-T+1,-T+2...+T. С математической точки зрения, состояния ms=1/2, как и состояния (u, d), образуют базис так называемого фундаментального представления d(1/2) группы SU(2)6 , и последовательное перемножение d(1/2) x d(1/2) x...x d(1/2) с последующим разложением на неприводимые представления D(s) (или T ) дает значения (или ) в мультиплетах.
Если в случае одной волновой функции глобальное калибровочное преобразование заключается в простом умножении на экспоненциальный множитель '=exp(i) , то для двух состояний глобальное калибровочное преобразование имеет вид: