Статья: Синтез и свойства полилевоглюкозана и некоторых его производных

ММ полимеров, определенные методом светорассеяния в растворе вхлороформе, составляли (394-500) 103 .

Рентгеноструктурный анализ показал, что политриметиллевоглюкозан является кристаллическим полимером; по данным ИК-спектроскопии, полимер не содержит гидроксильных групп.

Политриметиллевоглюкозан имеет удельное вращение 190-220°, обусловленное наличием 1-6-ά-глюкозидной связи. Доказательство этогослужит также тот факт, что единственным продуктом гидролиза полимера является 1,6-а-глюкоза.

В отличие от триметилцеллюлозы политриметиллевоглюкозад нерастворим в воде, спирте, ацетоне, дихлорэтане и в других органических растворителях, а хорошо растворим только в хлороформе, что можно объяснить особенностями его строения. По-видимому, политриметиллевоглюкозан имеет более плотную упаковку кристаллических цепей, чем триметилцеллюлоза, что приводит к увеличению сил межцепного взаимодействия и, следовательно, к уменьшению его растворимости [22-24].

В отличие от простых эфиров левоглюкозана триацетиллевоглюкозан был заполимеризован с использованием в качестве катализатора пятихлористой сурьмы. Показано, что оптимальными условиями полимеризации являются концентрация мономера 3-3,5 моль/л, количество катализатора 2-4 мол.%, температура 010°. Политриацетиллевоглюкозан представляет собой белый порошок, растворимый в хлороформе и дихлорэтане (М= (4,5-5,0) • 10\ [a] 20 D =160-180° (1% в хлороформе)).

С целью получения линейного, неразветвленного полилевоглюкозана было проведено дезацетилирование политриацетиллевоглюкозана метилатом натрия. В результате омыления ацетильных групп получен водорастворимый полилевоглюкозан с М=4,8-103 и [a] 20 D =160 (2% в воде). Методами турбидиметрического титрования и ГПХ определено его узкое ММР. Периодатное окисление, гидролиз полимера и хроматографический анализ образующихся продуктов показали, что элементарные звенья полилевоглюкозана на 90% связаны ацетильной 1,6-связью [25].

Валуевой [26-30] был осуществлен синтез на основе лювоглюкозана мононенасыщенного эфира, содержащего метакриловую группу у третьего гидроксила. В ходе синтеза метакрилового эфира использовалась предварительная селективная защита второго и четвертого гидроксилов левоглюкозана: бензиловая, тозиловая и фенилборонатная защиты. Наибольший интерес из этих защит представляет фенилборонатная. Впервые показана возможность образования 2,4-фенилборонатного цикла в молекуле левоглюкозана.

Монометакриловые эфиры левоглюкозана активны в реакциях радикальной полимеризации и сополимеризации с другими виниловыми мономерами. Получены сополимеры монометакрилового эфира левоглюкозана с некоторыми мономерными электролитами, например со стиролсульфоатом натрия. Продукты сополимеризации представляют собой линейные полимеры, содержащие в боковой цепи углеводные фрагменты и ионогенные группы. Эти сополимеры интересны прежде всего как модели природных полисахаридов, таких как сульфированные хондроитины, муко-полисахариды соединительной ткани, гепарины и т.д., имеющих в своем составе ионогенные группы. С другой стороны, синтез таких полимеров может иметь прикладное значение как способ получения новых биосовместимых медицинских материалов - заменителей плазмы крови, антикоагулянтов и т.д.

Исследование сополимеризации левоглюкозана и его эфиров. Сополимеры ангидридов Сахаров с соединениями других классов в литературе не описаны. Левоглюкозан близок по структуре к циклическим ацеталям, в частности к диоксолану, что позволило осуществить сополимеризацию с кислородсодержащими циклическими соединениями. Исследование сополимеризации кислородсодержащих циклических соединений проведено в направлении подбора условий полимеризации и каталитических систем, а также определения относительной реакционной способности мономеров.

Осуществлена сополимеризации ТМЛГ и триацетиллевоглюкозана (ТАЛГ) с эпихлоргидрином (ЭХГ) [31], 3,3-бис- (хлорметил) оксациклобутаном (ОЦБ) [32, 33], тетрагидрофураном (ТГФ) [34, 35] и стиролом [36, 37]. Установлен следующий ряд относительной активности в ряду циклических эфиров: ТГФ>ОЦБ>ЭХГ>ТМЛГ.

Сополимеризации ТМЛГ с ЭХГ проведена в органических растворителях с применением ВР3 -О (С2 Н5 ) 2 , SbCl5 и SnCl4 в качестве катализаторов. С увеличением доли ТМЛГ в мономерной смеси выход сополимеров уменьшается и наблюдается образование гомополимера ТМЛГ. Кинетические кривые расходования мономеров показывают, что ЭХГ полностью вступает в реакцию как при эквимольном соотношении мономеров, так и при избытке ТМЛГ. Константы сополимеризации, рассчитанные для широкого соотношения исходных мономеров и небольших степеней превращений, свидетельствуют о большей активности эпихлоргидрина в данной системе.

В зависимости от соотношения исходных мономеров получены полиэфиры с содержанием гидроксильных групп от 4 до 16%, хлора - от 13 до 26%. В реальных условиях при взаимодействии левоглюкозана с эпихлоргидрином в диоксане возможно протекание параллельных реакций, в частности сополимеризация диоксана с эпихлоргидрином и левоглюкозана с диоксаном; не исключена возможность тройной сополимеризации [38-41].

При сополимеризации ТМЛГ с ОЦБ образование сополимеров происходит с выходом 70-80%. Исследован процесс в зависимости от концентрации катализатора, температуры, продолжительности полимеризации я состава исходной смеси мономеров. При сополимеризации ТМЛГ с ОЦБ наблюдается образование двух фракций сополимеров, отличающихся по составу и растворимости.

Сополимеризация ТМЛГ с ТГФ осуществлена в растворе хлористого метилена при - 20 - +30°. Кинетические кривые расходования мономеров в процессе сополимеризации показывают, что при любых соотношениях мономеров не происходит их полного исчерпывания. Экспериментальные кривые изменения состава сополимера ТМЛГ и ТГФ свидетельствуют об обогащении сополимера звеньями ТГФ при всех соотношениях исходных мономеров. Образование сополимеров ТМЛГ с кислородсодержащими циклическими соединениями было доказано путем их фракционирования с последующим анализом фракций.

Осуществлена сополимеризация ТМЛГ со стиролом в среде органического растворителя с применением эфирата трехфтористого бора в качестве катализатора [36, 37].

Исходя из схемы полимеризации [36], трудно предположить регулярное чередование в сополимерах звеньев ТМЛГ и стирола в связи с различной активностью оксониевого и карбониевого ионов. В ходе сополимеризации не исключено также, что образуются блок-сополимеры. Возможность перехода во время реакции иона оксония в карбониевый была показана инициированием полимеризации стирола и метилметакрилата "живым" полимером ТМЛГ, полученным в присутствии эфирата трехфтористого бора.

Наличие в молекуле левоглюкозана трех вторичных гидроксильных групп позволяет синтезировать простые и сложные олиго - и полиэфиры левоглюкозана, полиуретаны, эпоксиды и другие реакционные олигомеры.

Простые олигоэфиры левоглюкозана и окиси пропилена получены в присутствии основных и кислотных катализаторов. Характеристика этих олигоэфиров приведена в работах [42-45]. В присутствии основных катализаторов присоединение окиси пропилена происходит по гидроксильным группам, не затрагивая 1,6-ангидроцикла, о чем свидетельствуют отрицательные значения угла удельного вращения олигоэфиров. Олигоэфиры, полученные в условиях основного катализа, содержат главным образом вторичные гидроксильные группы. Количество первичных гидроксильных групп в зависимости от исходного соотношения мономеров колеблется в пределах 5-13% от их общего содержания.

Реакция оксипропилирования с кислотными катализаторами проходит не только по гидроксильным группам, но и вызывает раскрытие 1,6-ангидроцикла, сопровождающееся нарастанием вязкости образующихся продуктов и усложнением их состава.

Олигоэфиры левоглюкозана имеют узкое ММР, причем менее однородные продукты получены при увеличении мольной доли окиси пропилена в олигоэфире [44].

При дегалогенировании хлоргидринов левоглюкозана едким натром получаются глицидиловые эфиры, отверждение которых приводит к образованию покрытий с повышенными прочностными свойствами [46, 47]. Получены и исследованы хлор - и фосфорсодержащие олигоэфиры левоглюкозана [48], сложные олигоэфиры и другие олигомеры [49].

Простые и сложные полиэфиры левоглюкозана использованы для синтеза полиуретанов различного строения. Исследована кинетика взаимодействия левоглюкозана с фенилизоцианатом. При взаимодействии левоглюкозана или его олигоэфиров с диизоцианатами в растворе абсолютного-диоксана или этилацетата при мольном соотношении гидроксильных и изоцианатных групп 2: 1 образуются аддукты строения:

которые могут служить "сшивающей" составляющей при реакции, с простыми и сложными полиэфирами [50, 51]. Получены и охарактеризованы пленки и покрытия на основе левоглюкозана и его эфиров и диизоцианатов [52-54]. Синтезированы пенополиуретаны на основе простых и сложных полиэфиров левоглюкозана, установлено влияние количества гидроксильных групп, степени раскрытия 1,6-ангидроцикла на их свойства [55-59]. Показано, что высокая теплостойкость и жесткость пенополиуретанов на основе левоглюкозана в значительной степени обусловлена его бициклическим строением.

Значительный интерес представляет синтез новых непредельных производных левоглюкозана для трехмерной полимеризации. Непредельные эфиры моносахаридов являются активными мономерами, легко полимеризующимися в присутствии ионных или радикальных инициаторов. Синтез непредельных эфиров левоглюкозана осуществлен в 5 н. растворе NaOH с использованием в качестве ацилирующего агента хлорангидридов акриловой и метакриловой кислот. Свойства синтезированных мономеров охарактеризованы в работах [60-63].

Повышенная функциональность олигомеров левоглюкозана и соответственно высокая степень сшивания приводят к увеличению прочности, твердости и теплостойкости полимеров.

Синтез производных левоглюкозана и возможные пути их использования. Разработаны методы синтеза 2,3 - и 4-дезоксипроизводных левоглюкозана [64]. Особый интерес представляет соединение, которое может быть получено из левоглюкозана, а именно стронциевая соль окси-D-э-тиленгликолевой кислоты [65].

В последние годы начаты исследования по синтезу ряда антибиотиков на основе левоглюкозана. В лаборатории химии углеводов Института органической химии АН СССР в последнее время начали развиваться работы по использованию моносахаров для синтеза 14-членных макролидных антибиотиков. В качестве исходного соединения был выбран левоглюкозан, бициклическая структура которого обеспечивает высокую регио- и стереоселективность необходимых превращений [66-70].

Так был синтезирован феррилевоглюкозанат цинка, который является эффективным препаратом в борьбе с болезнями культурных растений - розеточностью и хлорозом [71, 72]. Это же соединение является стимулятором роста кормовых дрожжей [73].

К-во Просмотров: 142
Бесплатно скачать Статья: Синтез и свойства полилевоглюкозана и некоторых его производных