Статья: Синтез и свойства полилевоглюкозана и некоторых его производных
Ограниченность запасов ископаемых органических ресурсов заставляет обратить особое внимание на использование растительного сырья, представляющего собой уникальный, постоянно возобновляемый, природный комплекс органических соединений. Создание новых способов переработки всей биомассы растительного сырья и изыскание рациональных путей максимального использования отдельных компонентов в соответствии с их потенциальной ценностью как органических соединений требуют углубленных исследований механизмов превращений компонентов растительного сырья при различных типах деструктивных воздействий. В этой связи исследованиевозможностей использования мономеров, получаемых при переработкерастительного сырья дляпроизводства полимерных и других соединений, является важной народнохозяйственной задачей.
Из существующих промышленных методов переработки целлюлозосодержащих материаловтолько методы кислотного гидролиза ведут к получению продуктов,сохраняющих состав элементарного звенаполисахарида (целлюлозы); существующие гидролитические методы разложения растительного сырья, в томчисле и целлюлозы, сопровождаются в основном распадом элементарных звеньев.
Еще в 1918 г. Пикте и Саразин [1] при термообработке хлопковой целлюлозы в интервале температур 350-400° при пониженном давлении получили левоглюкозан (1,6-ангидроглюкопиранозу) с выходом до 30%. Однако в течение длительного времени эти данные не удавалось воспроизвести. Отдельные сообщения различных авторов указывали на более низкие выходы левоглюкозана. В 50-х годах нами были начаты исследования, направленные на изучение закономерностей термического распада целлюлозы ивыявление причин, вызывающих изменения процесса деполимеризации ивыхода левоглюкозана. Ставилась задача по разработке термической деполимеризации целлюлозы с высоким выходом левоглюкозана, который мог бы послужить исходным органическим соединением для синтеза олигомерных, полимерных и других его производных.
Результаты исследований механизма разрыва гликозидной связи при термической обработке целлюлозы и образования левоглюкозана подробно рассмотрены нами в обзоре [2].
Термический распад целлюлозы до левоглюкозана включает разрыв С-О-С-связи 1,4 и образование новой ангидросвязи 1,6 с сохранением состава элементарного звена целлюлозы. В ходе этого процесса, происходящего при 300-400°, целлюлоза сохраняет свои гидроксильные группы. Кроме того, при термическом распаде образуется новая конформацияглюкопиранозного звена - переход от С-1 к 1-С, а также переход всех гидроксильных групп из экваториальных положений в оксиальные.
Исследования закономерностей термического распада целлюлозы показали, что ее деструкция происходит в две стадии. Первая стадия характеризуется резким уменьшением степени полимеризации п и низким выходом левоглюкозана. Для второй стадии характерны высокий выход левоглюкозана и постоянная величина степени полимеризации. На первой) стадии термораспада целлюлозы происходит разрыв цепных молекул с накоплением фрагментов с га=200-300 для хлопковой целлюлозы и 30 - 50 - для гидратцеллюлозы. На второй стадии после достижения постоянного значения п выход левоглюкозана достигает максимальной величины [3-9]. Следовательно, легкогидролизуемые полисахариды не позволяют получить высокий выход левоглюкозана. Для удаления этих полисахаридов следует проводить гидролиз 1% -ной серной кислотой до достижения предельных значений п. Термораспаду подвергаются в основном кристаллические области целлюлозы с предельным значением п.
Присутствие неорганических компонентов изменяет направление деполимеризации целлюлозы. Зависимость выходов левоглюкозана от содержания неорганических компонентов исследована в работах [8, 10]. Эти данные показывают, что термический распад целлюлозы с преимущественным образованием левоглюкозана становится возможным для обеих ее структурных модификаций и протекает наиболее полно при содержании золы менее 0,002%. Немаловажное значение имеет также быстрый вывод левоглюкозана на сферы реакции. Осуществление этой реакции в вакууме позволило провести термическую деполимеризацию целлюлозы с выходом левоглюкозана 73% [8].
Необходимость использования высокого вакуума делала указанный метод технически малодоступным. Поэтому позднее была исследована возможность осуществления направленного термораспада целлюлозы в токе перегретого водяного пара или инертного газа [11] при пониженном давлении.
Проведенные исследования [12-14] позволили разработать основы новой технологии комплексной переработки растительного сырья, согласно которой гидролитические процессы используются только для превращения легкогидролизуемых полисахаридов в монозы или фурфурол. Труд-ногидролизуемые полисахариды и лигнин превращаются в ряд ценных продуктов в результате термораспада в одном технологическом цикле. При таком комплексном методе переработки суммарный выход продуктов достигает 78% вместо 30-40 в современной гидролизной промышленности.
Для реализации разработанного технологического процесса комплексной переработки растительного сырья с применением гидролитических и термических процессов на Краснодарском химическом комбинате были созданы и освоены камеральная и полузаводская установки, на которых получено более 2 т левоглюкозана.
Возможность получения промышленных количеств левоглюкозана позволила начать исследования по синтезу полилевоглюкозана, его эфиров и других производных. Следует отметить, что синтез высокомолекулярных полисахаридов из моноз химическими методами является одним из перспективных направлений современной химии полимеров. Особый интерес в данном случае представляет то, что исходный мономер получают при переработке растительной биомассы.
Полимеризация левоглюкозана и его эфиров. Левоглюкозан (1,6-ан-гидроглюкопираноза) может представлять интерес для синтеза полимеров различного строения благодаря наличию в нем способного к размыканию семичленного цикла и трех вторичных гидроксилов. Установлена повышенная реакционноспособность гидроксильных групп при втором и четвертом атомах углерода.
К началу нашегоисследования (1959 г) были опубликованы отдельные работы (Пикте, Ирвин, Принсгейм) по термической полимеризации левоглюкозана, приводящей к получению низкомолекулярных разветвленных продуктов, но не имелось сведений о возможности полимеризации эфиров левоглюкозана. Более того, в ранних работах Шуерх [15] отрицалась возможность проведения такого синтеза. В этой связи интересно обратить внимание на попытку Шорыгина и Макаровой-Землянской [16] синтезировать полиэфир из триметиллевоглюкозана при действии на него металлического натрия в жидком аммиаке. Авторы полагали, что при этом воздействии произойдет разрыв простых эфирных связей и раскрытие ангидроцикла, что приведет к образованию полимера. Однако в результате реакции был получен фенол. Эти исследования представляют интерес, так как впервые показали возможность превращения углеводов в ароматические соединения.
Первоначальным толчком к попытке осуществить полимеризацию левоглюкозана путем раскрытия ангидроцикла послужила информация о том, что биохимический декстран по своему строению представляет полимер, состоящий из ангидроглюкозных единиц, связанных между собой 1,6-ангидросвязью.
С целью получения синтетического декстрана на первом этапе исследования нами была изучена полимеризация левоглюкозана в присутствии ряда катализаторов. Полученные полимеры хорошо растворимы в воде, пиридине и ДМФ; водные растворы полимеров имели, однако, весьма низкую приведенную вязкость.
Наиболее эффективными катализаторами оказались хлорное железо, хлористый алюминий, бензолсульфокислота и эфират трехфтористого бора. Была исследована полимеризация в присутствии различных количеств эфирата трехфтористого бора. Лучшие выходы полимеров получены в присутствии 2-5 мол.% катализатора. Молекулярные массы полилевоглюкозанов, определенные светорассеянием в ДМФ, составили (37,5-67,0) - 103 .
Рентгеноструктурный анализ полилевоглюкозана подтвердил его аморфную структуру, что хорошо согласуется с представлениями о разветвленности этих полимеров.
Позднее Абкин с сотр. провели полимеризацию левоглюкозана радиационным методом в твердой фазе. Было исследовано влияние на полимеризацию левоглюкозана γ-облучения, его продолжительности и других факторов. Во всех случаях получали разветвленный полимер с низкой приведенной вязкостью (0,04 дл/г).
Чтобы избежать реакций передачи цепи, приводящих к образованию разветвленных полисахаридов, нами была проведена защита гидроксильных групп левоглюкозана ацетильными, метильными и этильными группами. При полимеризации триацетата левоглюкозана в толуоле при температуре от 0 до 50° в присутствии эфирата трехфтористого бора, хлористого алюминия и хлорного железа полимер не образуется.
Иные результаты получены при полимеризации простых эфиров левоглюкозана. Так, при полимеризации триметиллевоглюкозана в абсолютном толуоле при 20-50° в течение 20-24 ч в присутствии эфирата трехфтористого бора наблюдалось образование полимера. Выход полимера и его ММ были наибольшими при использовании 6 мол.% BF3 . Анализ ИК-спектра исходного триметиллевоглюкозана и его полимера показал отсутствие в макромолекулах гидроксильных групп.
Полученные полимеры хорошо растворимы в хлороформе и крезоле и нерастворимы в воде, спирте, ацетоне и эфире. Растворы полимеров в хлороформе имели довольно высокую приведенную вязкость (0,12 - 0,28 дл/г); молекулярные массы, определенные светорассеянием в хлороформе, составляли (280-394) 10*.
Данные рентгеноструктурного анализа свидетельствуют о том, что полимеры триметиллевоглюкозана - кристаллические вещества (в отличие от самого полилевоглюкозана).
Политриметиллевоглюкозан обладает более высокой термостойкостью по сравнению с полилевоглюкозаном. Он разлагается только при 270°.
В результате этого исследования впервые получен линейный высокомолекулярный полисахарид, предложен механизм катионной полимеризациитриметиллевоглюкозана и сделаны выводы относительно механизма полимеризации левоглюкозана [17].
В последние годы исследования полимеризации триметиллевоглюкозана ведутся Пономаренко с сотр., которые всесторонне изучают механизм катионной полимеризации простых эфиров левоглюкозана, базируясь преимущественно на кинетических и термодинамических данных полимеризации одного из простейших представителей этого класса гетероциклических мономеров - 2, 3, 4-три-О-метиллевоглюкозана (ТМЛГ). Процесс инициировали солями оксония и тритилия с комплексными про-тивоионами SbCle _ , SbF6 _ , PF6 _ , BFt ~, СОг, а также (GF3 SО2 ) 2 О. Основные кинетические, активационные и термодинамические параметры получены при исследовании полимеризации ТМЛГ под действием оксониевой соли Etj+ О~SbGl6 при 20° вхлористом метилене. Для полимеризации этого мономера характерно наличие индукционного периода, после завершения которого процесс протекает стационарно вплоть до глубоких степеней превращения [18]. При исследовании инициирования ТМЛГ триалкилоксониевой солью найдено, что первичное взаимодействие мономера с инициатором осуществляется путем реакции оксониевого иона с метоксильными группами мономера; ряд последовательныхреакций переоксонирования предшествует образованию активного центра полимеризации, определяя продолжительность индукционного периода [19]. Методом [20], основанным на измерении кинетического изотопного эффекта полимеризации ТМЛГ, показана оксониевая природа активного центра, а также наличие специфической сольватации последнего молекулами мономера, что обеспечивает высокую стереоспецифичность полимеризации, ведущей к получению а- (1-"-6) - связанных метилированных полисахаридов. Высокая стереорегулярность полисахаридов, полученных в присутствии противоионов PF6 ~, SbF6 ~, BF4 ~, доказана методом ЯМР 13 С и измерением углов оптического вращения растворами синтезированных полимеров. Наблюдаемые в ряде исследованных случаев нарушения встереорегулярном строении обусловлены, по мнению авторов, реакцией между противоионом и активным центром, конкурирующей с актом роста цепи [21].
Найденные закономерности полимеризации ТМЛГ, несомненно, существенно облегчают выбор условий синтеза полиглюканов регулярного строения.
Исследования по полимеризации эфиров левоглюкозана, а позднее по сополимеризации левоглюкозана иего эфиров были продолжены в Институте химии древесины АН ЛатвССР Перникис.
Полимеризация триметиллевоглюкозана и триацетиллевоглюкозана. Были найдены оптимальные условия полимеризации триметиллевоглюкозана: осуществление процесса врастворе хлористого метилена при концентрации мономера 75% в присутствии в качестве катализатора эфирата фтористого бора (5 мол.%) при - 20° в течение 48 ч. В этих условиях образуется стереорегулярный линейный полимер триметиллевоглюкозана с наибольшим выходом (75-85%) ивысокой приведенной вязкостью (1,25-1,40 дл/г).
Полученный полимер представляет собой белый порошок с т. пл.265-270° (из термомеханических кривых), плотностью 1,246 г/см. Полимер растворим в хлороформе, о-, п - и w-крезоле, в смеси фенол: тетрабромэтан =1: 3 (при нагревании), а также в некоторых эфирах ненасыщенных кислот.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--