Статья: Создание светодиодов и лазеров: вклад российских ученых

Фантастический физико-технологический прорыв конца ушедшего века вызвал к жизни новую светодиодно-лазерную революцию, она ведет не просто к "дальнейшему техническому прогрессу", но кардинально преобразует саму среду обитания человека, ее световую, информационную, культурологическую составляющие. "Полупроводниковый свет" - это десятки ежегодных конференций, множество открытий, за которыми не успевают даже специалисты, все новые сферы применения. Это также огромные транснациональные корпорации почти с двукратным ежегодным ростом объемов производства, т.е. с 1000-кратным за 10 лет! А начиналось все лишь восемь десятилетий тому назад, первые страницы этой истории читаются сегодня как увлекательнейший триллер, активными действующими лицами были и многие наши соотечественники. Кто-то оказался на вершине признания, другим повезло меньше - история не всегда справедлива даже по отношению к достойнейшим.

I

Началось с обнаружения свечения полупроводников, которое порой было столь слабым, что его приходилось рассматривать в микроскоп. В 1922 г. в Нижегородской радиолаборатории (НРЛ), тогдашнем единственном радиотехническом институте страны, О.В. Лосев [1] занялся исследованием кристаллических детекторов [2]. Восемнадцатилетний радиолюбитель, только что окончивший школу, попытался обнаружить у этих приборов способность усиливать и генерировать радиоволны, полагая, что такими свойствами должны обладать все элементы с нелинейным сопротивлением, хотя любому специалисту известно, что для этого элемент должен иметь отрицательное сопротивление. Лосев об этом не знал, начал экспериментировать и... обнаружил искомое [3]. Оказалось (это выявили в 1950-е гг.), что "механизм усиления" как бы вкраплен в некоторые природные кристаллы, оставалось лишь нащупать иголочкой активные точки. На основе этого открытия в НРЛ начали изготавливать радиоприемники и передатчики без радиоламп - это стало мировой сенсацией: брошюры о кристадине [4] появились в Европе и США. Восхищаясь оригинальностью изобретения, публикаторы удивлялись непрактичности "профессора Лосева" [5], он вразрез с традициями западного мира не запатентовал это свое изобретение, сделав его бесплатным достоянием всех радиолюбителей.

В тех первых своих экспериментах Лосев заметил и свечение из-под иглы, но не придал этому особенного значения - какая-то микроскопическая вольтова дуга, по-видимому, так и должно быть, ничего особенного. Но в подсознании это осталось. В 1927 г. он уже специально занялся свечением и установил, что это "холодное" свечение кристалла, ни дуга ни разогрев не имеют к эффекту отношения, все определяется квантовыми процессами внутри кристалла - самоучка постепенно становился профессиональным физиком.

Мир признал и это открытие Лосева, мир - но не родина. Здесь его фактически не заметили. Правда, тогдашний глава отечественной полупроводниковой школы, директор Ленинградского физико-технического института А.Ф. Иоффе взял Лосева под свое покровительство, но к пользе исследований свечения это не привело. Дело в том, что интересы академика были связаны почти исключительно с полупроводниковыми термопреобразователями и фотоэлементами [6], возможно, именно к этой тематике он намеревался приобщить и Лосева. Лосев, индивидуалист, как многие крупные личности, до конца оставался одиночкой, все его публикации без соавторов. В статьях ленинградского периода он неизменно выражал благодарность академику, а тот добился присуждения Лосеву степени кандидата физико-математических наук без защиты и без вузовского диплома, представлял его сообщения в "Доклады" Академии наук. Но Лосев, фактически работавший в Физтехе и сблизившийся с его молодой порослью (он подружился с В.П. Жузе), так и не был введен в штат и, когда грянула война, не был включен в список эвакуируемых сотрудников [7].

Житейская судьба Лосева не была счастливой [8]. В Нижнем он начинал рассыльным и первое время ночевал прямо на предчердачной площадке в здании Радиолаборатории; когда в период кристадина стали приходить письма с обращением "Dear professor", он все еще не каждый день был сыт [9]; в 1928 г. после закрытия НРЛ он, как и другие ее сотрудники, оказался в Ленинграде, но постоянного места работы у него не было, всюду на птичьих правах; перед войной стал ассистентом на кафедре физики Мединститута и в первую страшную блокадную зиму 22 января 1942 г. скончался от истощения на 39-м году жизни. Место захоронения Олега Владимировича Лосева неизвестно.

Открытия, как поэмы и симфонии, живут самостоятельно, независимо от судеб их авторов. Рождение "свечения Лосева" пришлось на счастливую для отечественной физики пору: провозглашение "массового похода революционной молодежи в науку" подкреплялось материальными вложениями и значительностью задач, то было время, когда юные гении Г.А. Гамов, К.Д. Синельников, Л.Д. Ландау могли беспрепятственно ехать на стажировку к Бору и Резерфорду, а публикации в западных журналах были нормой [10]. Уже с 1930 г. лосевские статьи по свечению цитируются педантичными немцами, и к середине 1930-х гг. понятие "Lossev Licht" становится на Западе ходовым. А дальше - тишина на долгие 15 лет. Полупроводниковая наука и технология пребывали в зачаточном состоянии, для применения "свечения Лосева" не было объективных условий. На талантливую молодежь начал воздействовать "магнит попритягательней" - нейтронная физика. А с 1939-1940 гг. все подчинила себе военная тематика.

Лишь в начале 1950-х гг. вновь обратились (сначала в США, потом у нас) к карбиду кремния (именно в нем Лосев наблюдал самое яркое свечение), но стимулировалось это транзисторными проблемами: первые транзисторы, изготавливаемые из германия, не работали при повышенных температурах (что особенно драматично (sic! - V.V.) - проявилось в Корейской войне 1950-1953 гг.), и Пентагон излил золотой дождь на решение этой проблемы. Вскоре альтернативой германию стал кремний и закрепился навсегда, а на карбиде кремния транзисторы изготовить не смогли, но - не отказываться же от дарованных денег - потихоньку от военных занялись свечением и заметно преуспели. Естественно, вспомнили и Лосева, с цитирования его статей, в том числе и русскоязычных, начиналась тогда каждая публикация, было дано теоретическое обоснование его открытию и определено место Лосева в истории как первооткрывателя инжекционной люминесценции полупроводников - явления, составляющего основу принципа действия светодиодов и лазеров. Круг исследований начал стремительно расширяться, появились новые, более эффективные полупроводники, и вскоре приступили к созданию светодиодов.

Оказалось, однако, что историю "свечения Лосева" кое-кто непрочь и переписать. Готовясь к 200-летию США (1976), американские историки науки [12 ]обнаружили, что свечение карборунда наблюдалось еще в 1907 г. [13], и даже такой серьезный исследователь, как Е. Лёбнер, долгие годы проживший в Москве, тщательно изучивший наследие Лосева и еще в 1973 г. безоговорочно признававший его приоритет, теперь стал говорить лишь о переоткрытии им электролюминесценции [14]. В упомянутом письме в редакцию Г.Дж. Раунд толково рассказывает о свечении детекторов, но из его краткого сообщения (150 слов) неясно, была это инжекционная люминесценция или другое явление, также исследованное Лосевым, значительно менее эффективное и не имеющее практического значения. Резонанса заметка Раунда не получила, сам он, насколько известно, к "любопытному явлению" более не возвращался и, дожив до 1966 г., ни на какой приоритет не претендовал. Кстати говоря, и Лёбнер определяет имя Раунда в первооткрыватели электролюминесценции со множеством оговорок: "по-видимому, можно считать", "вероятно", "однако" и проч. "Страсти по Раунду" в истории техники это прелюдия той массированной мифологизации общей истории, которая позднее начала осуществляться на Западе очень широко (как, например, в кинопритче о солдате Райане, "выигравшем" Вторую мировую войну).

* * *

Историку науки очевидно, что открытие нового эффекта это нечто большее, чем просто факт его обнаружения. Кроме этого первого начального события, обычно случайного, "алгоритм открытия" должен включать [15]:

многократное воспроизводимое его наблюдение;

исследование с целью выявления природы явления;

объяснение, хотя бы как попытка;

подтверждение истинности теми или иными практиками;

публикация и признание обществом.

И при этом окончательное суждение история выносит лишь спустя некоторое время, достаточное для осмысления произошедшего [16].

Переходя к общей оценке научной деятельности Лосева, повторимся, что открытие им инжекционной люминесценции в полной мере соответствует описанному алгоритму, чего нельзя, по нашему мнению, распространить на его же открытие кристадина. Здесь мы имеем дело лишь с обнаружением и использованием эффекта; ни исследования, ни приближения к пониманию механизма явления не произошло [17]. В этой связи утверждение Лебнера, что изобретатели транзистора Дж. Бардин и У. Браттейн переоткрыли в 1947 г. эффект усиления, открытый Лосевым в 1922 г., несостоятельно. Даже с большой натяжкой Лосева нельзя считать предтечей изобретения транзистора, - как говорится, чужого нам не надо.

Другое дело, что если бы в конце 1930-х гг. или сразу же после войны перед ним была сформулирована проблема полупроводникового усилителя и если бы жизнь его не оборвалась так рано, то с большой вероятностью транзистор мог бы родиться в России - залогом тому лосевская интуиция, самоотдача, изощренность экспериментатора.

II

Итак, к началу 1950-х гг. разобрались со свечением полупроводников, однако тогда же поняли, что ни карбид кремния, ни германий, ни кремний для светодиодов не подходят. Нужен похожий на них полупроводник, но совсем другой, и такого в природе нет. Так в традиционной цепочке "физика (эффект + теория) - материал - изделие (конструкция + технология + применение)" исследования переместились на второе звено. Новые полупроводники были нужны всей электронике, правда, в то время транзисторы полностью удовлетворились кремнием, а на роль "главного заказчика" вышла инфракрасная техника, которая все эффективнее демонстрировала военным свои чудодейственные возможности, в первую очередь: противосамолетные тепловые головки самонаведения [18] и приборы ночного видения, включая тепловизоры [19].

В 1952-1953 гг. Генрих Велькер из Мюнхена опубликовал фундаментальную статью [20], в которой обосновывалась возможность создания целого класса искусственных полупроводников на любой вкус, соединяя парами специально подобранные металлы, образующие интерметаллические соединения. Но за два года до этого, в 1950 г. наша соотечественница Н.А. Горюнова уже предсказала "полупроводниковость" некоторых интерметаллов. Отталкиваясь от химических представлений об изоморфизме, кристаллохимических группах, видах валентной связи, она, пока еще интуитивно, перебрасывала мостик к электрофизическим свойствам синтезируемых веществ. Тогда же на двух составах это было подтверждено экспериментально [21]. Но в первооткрывателях ее имя на Западе ни тогда, ни позднее не появилось, только Велькер, безоговорочно и в единственном числе. Может быть, так и есть, и мы имеем дело с повторением ситуации Лосев - Раунд? Ведь в предыдущем разделе обосновывалось (хочется надеяться, убедительно), что не обязательно первый, кто подметил новое, должен зачисляться в авторы. Да, не обязательно. Но это не случай Горюновой.

Нина Александровна Горюнова принадлежит к ярчайшим представителям военного поколения, закаленного в трудностях, целеустремленного и волевого. Когда в 1946 г. она появилась в Физтехе, у нее за плечами были фабрично-заводское училище, химфак Ленинградского университета, два года работы по распределению в заводской лаборатории, предблокадные ленинградские будни, эвакуация в далекий Хабаровск. По возвращении в Ленинград ей уже 30, надо растить четырехлетнего сына и годовалую дочь. Но была в этой русской женщине небесная искра - она поступает в аспирантуру к А.Ф. Иоффе!

Академик дал ей вполне защищаемую и не слишком перспективную тему из числа тех, когда надо закрыть очередную клеточку в мозаике необследованных веществ, которые - а вдруг? - могут оказаться полезными полупроводниками. "Серое олово" - одно название могло навести тоску, но она раскрутила его на свой лад. Могли же Шерлок Холмсы по ниточке и обрывку газеты воссоздавать личность человека, а заодно и всю его родословную. За подсказками по методологии обобщений она обращается не к кому-нибудь, а к Менделееву, Курнакову, Гольдшмидту [22]; в практической деятельности использует свой, ставший потом "фирменным", напор: пробивается в запасники Эрмитажа, где ей разрешают с потемневших старинных оловянных потиров наскрести пригорошню "оловянной чумы", это и есть серое олово.

Предвидение академика подтвердилось: серое олово и впрямь оказалось полупроводником, но практически бесполезным. Зато на нем Горюнова угадала тот рецепт, по которому можно было синтезировать любые интерметаллы. Первое сообщение об этом - ее кандидатская диссертация (1950), но диссертации часто остаются незамеченными. В октябре того же года - доклад на Всесоюзном совещании в Киеве, отмеченный патриархами А.Ф. Иоффе [23] и В.Е. Лашкаревым, в 1951 г. появляются ее публикации в "Докладах..." и "Известиях..." Академии. Это читают на Западе, но стоит ли им ожидать чего-то значительного из невосстановленной после военной разрухи страны? А Горюновой не до утверждения приоритетов, она торопится: синтезирует все новые соединения, находит ключик к смешиванию трех, четырех (и сколько хотите еще) компонентов.

Ее энергия, оптимизм, профессионализм, весь ее облик притягательны [24], она щедра в раздаривании идей - "школа Горюновой" распространяется на многие научные центры страны, с ней стремятся познакомиться знаменитая Генриетта Родо из Франции, английский профессор К. Хилсум... В 1968 г. появляется ее итоговая монография, где сделана попытка предложить периодическую систему полупроводниковых соединений [25]. В новых идеях у нее тоже нет недостатка, но ... Так часто судьба бывает подчеркнуто несправедливой по отношению к лучшим: Нина Александровна умерла от тяжелой болезни 31 января 1971 г., едва достигнув 54 лет.

На одном из международных конгрессов еще при ее жизни Нобелевский лауреат Н.Н. Семенов отметил: "Работы Горюновой совершают... переворот в неорганической химии". Как видим, на ситуацию Лосев - Раунд совсем непохоже, по "горячим следам" о приоритете Горюновой неоднократно высказывались такие авторитетные ученые, как Б.И. Болтакс, Б.Т. Коломиец, А.И. Губанов, позднее - Ж.И. Алферов, причем очень активно и на представительных международных форумах.

Было ли признание всеобщим? Длительное время Горюнова работала у Д.Н. Наследова, он возглавлял единственную тогда в Физтехе полупроводниковую лабораторию, где многие вполне сложившиеся ученые довольствовались секторами или группами. Профессор Наследов (1903-1975) был блестящим лектором, педагогом, организатором: руководить аспирантами он начал с 25 лет, и в какие-то моменты их одновременно бывало у него более 15; в 28 - он заместитель директора; позднее - много сил и внимания уделял организации научных центров в республиках СССР. Его отличали склонность к обобщениям, обстоятельность и неспешность, так вплоть до 1957-1958 гг., судя по публикациям, он сохранял заметный интерес к исследованиям селена, полупроводника, бесперспективность которого всем в мире уже была очевидна.

И вот рядом с ним Горюнова - "лед и пламень". Искрометная одержимость, упоение созданием новых веществ, их "здесь и сейчас" своими руками она синтезировала в вытяжном шкафу. Конечно, в ее ранних исследованиях не было законченности и строгой доказательности, их тогда и не могло быть по сути дела. Возможно, поначалу она не очень-то уверенно чувствовала себя в среде физиков, которые иронизировали: "если один грязный металл соединить с другим грязным, то что, кроме грязи, мы получим?" В те годы требование суперчистоты всех компонентов полупроводниковой технологии уже фактически стало аксиомой. Загипнотизированные совершенством германиевых и кремниевых кристаллов физики недоверчиво поглядывали на очередной слиточек, извлеченный Горюновой из ампулы: "а полупроводник ли это?" (Характерно в этой связи название доклада: "Изучение электропроводности полупроводников и интерметаллических соединений ...".)

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 188
Бесплатно скачать Статья: Создание светодиодов и лазеров: вклад российских ученых