Статья: Строение клеток прокариот и эукариот

Рис. 5. Структура хроматина: 1 – нуклеосома, 2 – ДНК

Под микроскопом внутри ядра видны зоны плотного вещества – хроматина. В неделящихся клетках он равномерно заполняет объем ядра или конденсируется в отдельных местах в виде более плотных участков и хорошо окрашивается основными красителями. Хроматин представляет собой комплекс ДНК и белков (рис. 5), большей частью положительно заряженных гистонов.

Рис. 6. Упаковка молекулы ДНК

в хромосоме

Количество молекул ДНК в ядре равно числу хромосом. Количество и форма хромосом являются уникальной характеристикой вида. В состав каждой из хромосом входит одна молекула ДНК, состоящая из двух связанных между собой нитей и имеющая вид двойной спирали толщиной 2 нм. Длина ее значительно превышает диаметр клетки: она может достигать нескольких сантиметров. Молекула ДНК заряжена отрицательно, поэтому сворачиваться (конденсироваться) она может только после связывания с положительно заряженными белками-гистонами (рис. 6).

Сначала двойная нить ДНК закручивается вокруг отдельных блоков гистонов, в каждый из которых входит 8 молекул белка, образуя структуру в виде «бусин на нитке» толщиной около 10 нм. Бусины называются нуклеосомами. В результате формирования нуклеосом длина молекулы ДНК уменьшается примерно в 7 раз. Далее нить с нуклеосомами сворачивается, формируя структуру в виде каната толщиной около 30 нм. Затем такой канат, изогнутый в виде петель, прикрепляется к белкам, образующим основу хромосомы. В результате образуется структура с толщиной около 300 нм. Дальнейшая конденсация этой структуры приводит к образованию хромосомы.

В период между делениями хромосома частично разворачивается. В результате этого отдельные участки молекулы ДНК, которые должны экспрессироваться в данной клетке, освобождаются от белков и вытягиваются, что делает возможным считывание с них информации путем синтеза молекул РНК.

Ядрышко – это тип матричной ДНК, отвечающей за синтез рРНК и собранной в отдельных участках ядра. Ядрышко – наиболее плотная структура ядра, оно не является отдельным органоидом, а представляет собой один из локусов хромосомы. В нем образуется рРНК, которая затем образует комплекс с белками, формируя субъединицы рибосом, которые уходят в цитоплазму.

Негистоновые белки ядра образуют внутри ядра структурную сеть. Она представлена слоем фибрилл, подстилающим ядерную оболочку. К ней прикрепляется внутриядерная сеть фибрилл, к которой присоединены фибриллы хроматина.

Ядерная оболочка состоит из двух мембран: внешней и внутренней, разделенных межмембранным пространством. Внешняя мембрана соприкасается с цитоплазмой, на ней могут находиться полирибосомы, а сама она может переходить в мембраны эндоплазматического ретикулума. Внутренняя мембрана связана с хроматином. Таким образом, ядерная оболочка обеспечивает фиксацию хромосомного материала в трехмерном пространстве ядра.

Оболочка ядра имеет круглые отверстия – ядерные поры (рис. 7). В области поры внешняя и внутренняя мембраны смыкаются и образуют отверстия, заполненные фибриллами и гранулами. Внутри поры располагается сложная система из белков, обеспечивающих избирательное связывание и перенос макромолекул. Количество ядерных пор зависит от интенсивности метаболизма клетки.

Рис. 7. Поры в ядерной мембране

Рис. 8. Эндоплазматический ретикулум

Эндоплазматический ретикулум, или эндоплазматическая сеть (ЭПР), представляет собой причудливую сеть каналов, вакуолей, уплощенных мешков, соединенных между собой и отделенных от гиалоплазмы мембраной (рис. 8).

Различают шероховатый и гладкий ЭПР. На мембранах шероховатого ЭПР находятся рибосомы (рис. 9), которые синтезируют белки, экскретируемые из клетки или встраивающиеся в плазматическую мембрану. Вновь синтезированный белок сходит с рибосомы и проходит через специальный канал внутрь полости эндоплазматического ретикулума, где он подвергается посттрансляционной модификации, например связыванию с углеводами, протеолитическому отщеплению части полипептидной цепи, образованию S–S-связей между остатками цистеина в цепи. Далее эти белки транспортируются в комплекс Гольджи, где входят либо в состав лизосом, либо секреторных гранул. В обоих случаях эти белки оказываются внутри мембранного пузырька (везикулы).

Рис. 9. Схема синтеза белка в шероховатом ЭПР: 1 – малая и

2 – большая субъединицы рибосомы; 3 – молекула рРНК;

4 – шероховатый ЭПР; 5 – вновь синтезируемый белок

Гладкий ЭПР лишен рибосом. Его основная функция – синтез липидов и метаболизм углеводов. Он хорошо развит, например, в клетках коркового вещества надпочечников, где содержатся ферменты, обеспечивающие синтез стероидных гормонов. В гладком ЭПР в клетках печени находятся ферменты, осуществляющие окисление (детоксикацию) чужеродных для организма гидрофобных соединений, например лекарств.

Рис. 10. Аппарат Гольджи: 1 – пузырьки; 2 – цистерны

Комплекс Гольджи (рис. 10) состоит из 5–10 плоских ограниченных мембраной полостей, расположенных параллельно. Концевые части этих дискообразных структур имеют расширения. Таких образований в клетке может быть несколько. В зоне комплекса Гольджи находится большое количество мембранных пузырьков. Часть из них отшнуровывается от концевых частей основной структуры в виде секреторных гранул и лизосом. Часть мелких пузырьков (везикул), переносящих синтезированные в шероховатом ЭПР белки, перемещается к комплексу Гольджи и сливается с ним. Таким образом комплекс Гольджи участвует в накоплении и дальнейшей модификации продуктов, синтезированных в шероховатом ЭПР, и их сортировке.

Рис. 11. Образование и функции лизосом: 1 – фагосома; 2 – пиноцитозный пузырек; 3 – первичная лизосома; 4 – аппарат Гольджи; 5 – вторичная лизосома

К-во Просмотров: 251
Бесплатно скачать Статья: Строение клеток прокариот и эукариот