Статья: Структуризация и систематизация сюжетных задач по сложности их решения
Анализ школьной практики показывает, что формирование умения у учащихся вести поиск решения сюжетных задач, организация стратегии и тактики этого поиска учителем невозможна без выявления структуры решения задачи - основных ее частей (структурных элементов) и отношений между ними. Предварительно напомним определение некоторых используемых понятий [1, 2].
Определение 1. Отношением R на множестве M называется подмножество R множества MxM = M2.
Пусть M = {0; 2; 5; 7}, тогда M2 = {0;0; 0;2; 0;5; 0;7; 2;0; 2;2;2;5; 2;7; 5;0; 5;2; 5;5; 5;7; 7;0; 7;2; 7;5; 7;7}.
Из множества M2 выделим подмножество R тех пар x;y, в которых xy. Выпишем эти пары: {2;0; 5;0; 5;2; 7;0; 7;2; 7;5}. Если x; y R, то "х находится в отношении R с у" или xRy. Само выражение xRy называется соотношением.
Определение 2. Отношение R на множестве M называется отношением строгого порядка (или строгим порядком), если оно антирефлексивно и транзитивно. Множество M с заданным на нем отношением строгого порядка R, т.е. пару M; R, называют упорядоченным множеством. Наглядно отношение строгого порядка можно представить в виде модели.
Определение 3. Моделью называется кортеж M; R1, R2, ..., Rm , где M - некоторое множество, а R1, R2,..., Rm - отношения на этом множестве (не обязательно бинарные).
В педагогических исследованиях широкое применение получили модели, в которых в качестве структуры объекта исследования выступает граф.
Определение 4. Графом Г называется непустое множество M и множество отношений, заданных на M [2].
Граф (рис.1) является моделью бинарного отношения R. Круги, соответствующие числам, - вершины графа; ориентированные отрезки, соединяющие вершины - ребра графа (дуги). Это модель M;с одним (бинарным) отношением строгого порядка.
Рис. 1
Рассмотрим специальный класс отношений строгого порядка - так называемые древесные порядки. Пусть имеется множество M с отношением строгого порядка . Элемент x0 называется наибольшим, если для всякого у M, отличного от x0, выполнено соотношение уx0. Очевидно, что наибольший элемент, если он существует, единствен.
Определение 5. Отношение строгого порядка на множестве M называется отношением древесного порядка (или древесным порядком), если
1) из того, что xу и xz следует, что у и z сравнимы;
2) во множестве М, , существует наибольший элемент.
Множество M с заданным на нем древесным порядком называют деревом, а наибольший элемент - корнем дерева. Для конечного дерева существует числовая характеристика - сложность дерева, которую будем отождествлять со сложностью решения задачи.
На рис.2 изображены деревья, имеющие одинаковое число вершин, и показан способ нахождения сложности дерева ((Дi)).
Рис. 2
Так, например, сложность вершины (x1) = 2·7, где 2 - число ребер, входящих в x1; 7 - число всех вершин, включая и саму вершину x1. Аналогично - (у) = 2·5 и т.д. Суммарная сложность всех вершин и дает сложность дерева Дi:
(Д1) = 2·7+2·5 + 2·3 = 30, соответственно
(Д2) = 3·7+3·4 = 33,
(Д3) = 2·7+2·3+2·3 = 26 [1, c. 141-142].
Заметим, что граф с бинарным отношением строгого порядка можно "расслоить" в дерево.
Проводя семантический анализ сюжетных задач, Л. М. Фридман [3] выделил следующие виды отношений, связывающих величины и их значения: отношение соединения; отношение отнимания; отношение сравнения (если величина задана двумя своими значениями): разностное отношение или кратное отношение двух значений величины, отношение разбиения (разделения); отношение-зависимость. Эти отношения являются уже не бинарными, а тернарными.
Будем рассматривать задачу как систему, т.е. как множество элементов, находящихся в определенном отношении друг к другу, причем это отношение обладает определенным свойством [4]. При построении моделей систем нужно учитывать то важное обстоятельство, что будучи аналогом системы модель не может достигнуть степени сложности оригинала. В модели стремятся отразить какое-нибудь одно отношение или структуру, специально выделенную для исследования. Поэтому моделирование по своей логической структуре напоминает умозаключение по аналогии. Вывод по аналогии о некоторых свойствах модели может быть экстраполирован на оригинал (систему) только в том случае, если отношения между элементами модели и системы установлены по одним и тем же свойствам и понимаются в одном и том же смысле. Эти отношения являются внутренними [4]. Отношение между величинами в задаче (отношение равенства) может быть установлено по разным свойствам:
a·b = c - по мультипликативным свойствам;
a+b = с - по аддитивным свойствам.
В дереве дуги задают бинарное отношение между вершинами. В задаче же отношение между величинами является тернарным, и устанавливается оно по разным свойствам. Поэтому будем рассматривать дерево, в котором фиксируется свойство, по которому установлено тернарное отношение равенства и называть его дерево-оператор (в дальнейшем просто дерево).
--> ЧИТАТЬ ПОЛНОСТЬЮ <--