Статья: Цитоскелет сигнализирует
Рис. 14. Создание сети с помощью молекул филамина
Вспомогательные белки филамин и -актинин выполняют функции своеобразных скобок, сшивающих филаменты актина в структуру, напоминающую рыболовную сеть (рис. 14). Белок фибрин связывает актиновые филаменты в толстый пучок вроде веника или снопа. Тропомиозин стабилизирует уже сформированные тяжи актина (рис. 7). Гельзолин действует словно секатор, разрезая длинные филаменты на отдельные кусочки. Профилин, как нянька, сопровождает актиновые глобулы к местам их присоединения к образовавшимся ранее фрагментам нитей, виллин служит инициатором полимеризации актина в растворе, а тимозин, наоборот, не позволяет глобулярному актину соединятся в нити. Наконец, миозин способен активно подтягивать филаменты навстречу друг другу (рис. 5). Таким образом актиновые филаменты можно уподобить арматуре строительных лесов, которые можно резать, надставлять и соединять под любыми углами и в любых положениях. Их можно также соединять вместе, создавая тянущее напряжение всей конструкции.
Тубулин оказался белком не менее замечательным, чем актин. Образованные им микротрубочки способны разбираться с одного конца и собираться с другого. Белок нексин помогает им объединяться в сложные ансамбли, а белок динеин может скользить по тубулиновой микротрубочке, как дрезина по рельсам. Поскольку динеин в то же время способен жестко прикрепляться к микротрубочке другой своей стороной, это обеспечивает взаимное скольжение трубочек друг относительно друга.
В некоторых случаях филаменты и микротрубочки образуют четкий шаблон для построения определенных органоидов. Так происходит, например, в развивающемся сперматозоиде: актиновые филаменты формируют спиралевидную конструкцию, структуру которой потом, после ее распада, в точности повторяют возникшие на этом месте митохондрии. Высокоорганизованные летательные мышцы насекомых строятся в эмбриогенезе по тубулиновым шаблонам.
Помимо актиновых филаментов и тубулиновых микротрубочек в состав цитоскелета входят также промежуточные филаменты (диаметром 7–11 нм), которые исследованы значительно хуже, но, как полагают, являются не менее лабильными образованиями.
Белки цитоскелета принимают деятельное участие в движении клетки, поскольку для его осуществления требуется постоянное изменение ее формы. Мышечное сокращение, амебоидное движение, перешнуровывание клетки во время деления, фагоцитоз основаны на взаимодействии актина и миозина, а биение ресничек и жгутиков сперматозоидов происходит благодаря скольжению микротрубочек друг относительно друга.
Белки цитоскелета незаменимы там, где надо создать сложную пространственную и относительно стабильную форму. Например, внутри микроворсинок эпителиальных клеток кишечника и почек проходят пучки актиновых филаментов. Принципиально такие же, но гораздо более мощные пучки находятся в стереоцили волосковых клеток в улитке внутреннего уха. Похожая на двояковогнутую шайбу форма эритроцита поддерживается благодаря взаимодействию актина с белками спектрином и анкирином.
Подобные примеры можно было бы множить, однако важнее задаться вопросом: только ли к фиксации формы клетки сводится роль ее цитоскелета? Может быть, он играет существенную роль в образовании функциональных комплексов водорастворимых ферментов, а образованная цитоскелетом сеть служит для приема и передачи информации? Исходя из физико-химических свойств белков цитоскелета, это, в принципе, возможно. Вспомните ловчую сеть пауков. Она не только образует хитрые ловушки для насекомых. Натяжение и дрожание паутинок сигнализируют их конструктору о пойманной добыче или непредвиденной поломке ажурной конструкции.
Паутина сигнализирует
Указания на роль цитоскелета в передаче информации в клетки начали накапливаться с 1980-х гг. К этому времени уже было известно явление так называемого кеппинга.
Вернемся к началу этой статьи. Когда сигнальные вещества – лиганды – взаимодействуют со своими рецепторами, образовавшиеся комплексы собираются на поверхности клетки в компактную группу. Затем клеточная мембрана изгибается и комплексы лигандов с рецепторами втягиваются внутрь клетки (интернализируются), где происходит их утилизация. В этом процессе принимает участие актин, филаменты которого связываются с внутриклеточной частью пронизывающего мембрану рецептора. Играет ли при этом актин роль только лишь стягивающей сеточки, необходимой для образования на мембране впадины, или же его роль в этом процессе более сложна, остается пока не выясненным.
Актиновые филаменты способны прикрепляться не только к рецепторам, но и к клеточной мембране в районе так называемых фокальных контактов, образующихся в местах соприкосновения клетки с субстратом. Являются ли эти контакты лишь местами крепления к субстрату или же они одновременно информируют клетку об окружающих ее молекулах, частицах?
Проведенная выше аналогия устройства цитоскелета с сетью паутины становится почти наглядной, если учесть, что микротрубочки и промежуточные филаменты тянутся от ядра к периферии клетки. Из исследований культивируемых вне организма клеток хорошо известно, что большинство из них при осуществлении активной работы распластываются на той или иной подложке (рис. 15). В этих условиях в клетках формируется сложная трехмерная сеть филаментов.
Рис. 15. Схема расположения актиновых филаментов в тонких пластинчатых отростках (ламеллоподиях) клеток, растущих в культуре
Эти наблюдения хорошо согласуются с данными о том, что митохондрии и лизосомы передвигаются в клетке не случайным образом, а вдоль микрофиламентов. Часть белоксинтезирующего аппарата клетки тоже связана с цитоскелетом. Если разрушить микротрубочки, то расположение таких важных органоидов как пузырьковидные элементы аппарата Гольджи, в которых проходят конечные стадии созревания готовых для экскреции белков нарушается, они оказываются размещенными в клетке случайным образом, а не в определенном порядке. Некоторые водорастворимые ферменты, участвующие в гликолизе, связаны с актиновыми филаментами. Хорошо известно, что в транспорте белков в нервных клетках также участвуют актиновые филаменты.
Следовательно, для синтеза определенных белков (а значит, и для выполнения определенных функций), клетка должна привести свой цитоскелет в рабочее состояние, которое обеспечивает необходимую пространственную организацию клеточных реакций и процессов. С этим выводом хорошо согласуется тот факт, что при различных стрессовых воздействиях клетка в первую очередь разбирает основные компоненты своего цитоскелета, а затем формирует их заново, в соответствии с реакцией на полученный сигнал. Такая перестройка обеспечивает переключение с одного режима работы на другой.
Будет ли клетка по-разному формировать свой молекулярный скелет в ответ на активацию различных поверхностных рецепторов? Опыты с фибробластами и эпителиальными клетками, распластывающимися на стекле, покрытом различными белками, дают на этот вопрос однозначный ответ.
Если на стекло нанести белок внеклеточного матрикса – фибронектин, то распластавшиеся на нем фибробласты принимают полигональную форму и в них активно формируются состоящие из актина так называемые стрессфибриллы. Другой нанесенный на стекло белок внеклеточного матрикса – ламинин – вызывает активное движение фибробластов вследствие образования у них узких спицеподобных микрошипов и плоских тонких ламеллоподий (рис. 15). Стрессфибриллы в этой ситуации не образуются вовсе. Наконец, нанесенные на стекло антитела к эпидермальному фактору роста (веществу, стимулирующему активное деление клеток кожи) вызывают в распластывающихся клетках эпидермиса образование полусфер из актина.
Хотя детали этих процессов остаются пока не ясными, очевидно, что клетки по-разному формируют свой цитоскелет в зависимости от тех или иных сигналов, полученных из окружающей среды.
Скептически настроенный читатель может возразить на это, что реорганизация цитоскелета не имеет прямого отношения к проведению внутриклеточных сигналов, а скорее является следствием, реакцией клетки на эти сигналы. Однако такое утверждение, в свою очередь требует доказательств.
Интересные, в этом плане, результаты были получены при работе с клетками CHO (от англ. Chinese Hamster Ovary cells), выделенными из китайских хомячков. При определенных условиях они становились раковыми. Вернуть их в нормальное состояние помогало добавление бутирата цАМФ – формы цАМФ, которая легко проникает внутрь клеток. Если же предварительно раковые клетки CHO обрабатывались разрушающим цитоскелет цитохалазином, то нормализации не происходило. Из этих экспериментов следует, что для успешного использования цАМФ в качестве вторичного мессенджера клетка должна иметь работоспособный цитоскелет.
Очень важны данные исследователей, работавших с протоонкогенами Ras, Rho и Cdc42 (т.е. с генами, повреждение которых почти неизбежно превращает нормальную клетку в раковую). Ген Ras активируется (т.е. начинается синтез закодированного в нем белка) уже упоминавшимся эпидермальным фактором роста, Rho – мощным стимулятором клеточного деления лизофосфатидиловой кислотой, а Cdc42 – пептидным гормоном брадикинином. В экспериментах было показано, что действие гена Ras связано с образованием в клетках сети микрофиламентов и ламелл, похожих на амебные псевдоподии. Ген Rho ответственен за формирование стрессфибрилл, а Cdc42 вызывает образование филлоподий.
Полученные результаты становятся совсем уже интригующими в свете последних открытий, связанных с изучением особых трансмембранных белков интегринов. Как правило, эти клеточные рецепторы состоят из двух цепей – альфа и бета, причем существует 15 вариантов первой и 98 вариантов второй. Собираясь в разных комбинациях, они образуют как минимум 20 различных типов интегринов, некоторые из которых способны связываться с белками внеклеточного матрикса, например, ламинином и фибронектином. При этом происходит активация уже знакомых нам протоонкогенов Ras и Cdc42!
Каким же образом полученный интегринами сигнал поступает в ядро? Сами интегрины не обладают фосфатазной активностью, т.е. не способны активировать белки с помощью присоединения к ним фосфатных групп. Зато торчащую внутрь клетки часть молекулы интегрина окружает целый комплекс белков, таких, например, как таллин, винкулин, паксиллин, а также фермент FAC-киназа, связанный с фокальными контактами – своеобразными «пуантами», на которых клетка передвигается по субстрату. От этого белкового ансамбля внутрь клетки отходят актиновые нити, которые совместно с микротрубочками и промежуточными филаментами могут доходить от мембранной периферии клетки до ее ядра. Полагают, что так передается сигнал в ядро клетки.
Это предположение подтверждается данными экспериментов, проведенных с искусственно выращиваемыми мышиными фибробластами, трансформированными онкогеном Ras. В этих опытах было показано, что в ответ на внешний сигнал – эпидермальный фактор роста – клетка синтезирует белок – фактор транскрипции NFkb, который участвует в самой первой стадии синтеза белка – считывании (транскрипции) РНК с ДНК, находящейся в ядре. Фактор транскрипции находится в цитоплазме и связан непосредственно с элементами цитоскелета, а именно со стрессфибриллами и фокальными контактами. Это означает, что соединение, играющее существенную роль в регуляции работы ядерных генов, буквально вплетено в цитоскелетную сеть!
Возвращаясь к загадкам вторичных мессенджеров, можно предположить, что цитоскелет принимает активное участие в проведении внутриклеточных сигналов, за счет образования пространственных комплексов между рецепторами, соответствующими протеинкиназами и активируемыми ими белками. Аналогичную роль цитоскелет может играть и в ситуации с кальмодулином, поскольку определенное его количество в клетке связано с пучками актиновых филаментов и промежуточных филаментов. Функции цитоскелета в активации ядерных генов менее ясны, но указания на такую возможность уже получены.
Кто в клетке король?
На этом можно было бы и закончить рассказ о возможной роли цитоскелета во внутриклеточной сигнализации, если бы не еще одно любопытное соображение. Дело в том, что в ядре клетки содержится информация о первичной структуре всех белков, включая белки цитоскелета, но нет абсолютно никаких указаний на их взаимное расположение. Если образованные белками пространственные структуры чрезвычайно стабильны, можно говорить о самосборке, которая действительно происходит, например, в случае образования белковых оболочек вирусов или при формировании прямо в пробирке тубулиновых микротрубочек. Однако когда дело касается таких лабильных и способных к сложным перестройкам структур, как цитоскелет, только к самосборке их образование не свести. Что же определяет ту или иную конфигурацию цитоскелета?
Явно не ядро – как не определяет состояние общества накопленная в библиотеках информация. Ее можно почерпнуть оттуда, но что и когда будет востребовано определяется самим обществом. Вероятно, так же действует и клетка, достаточно автономно от ядра формируя свою пространственную структуру.
Известно, что миниатюрные безъядерные фрагменты фибробластов живут часами, активно ползая и приобретая различные формы. Живущие неделями в кровяном русле тромбоциты также лишены ядра, что не мешает им принимать активное участие в таком важном процессе, как свертывание крови при травмах сосудов. Пространственная структура клетки может самовоспроизводиться и даже оказывать воздействие на ее внешние реакции. Интегрины, например, обладают уникальной для трансмембранных (т.е. пронизывающих мембрану насквозь) рецепторов способностью реагировать на внутренние клеточные сигналы, изменяя при этом свое сродство к тем или иным внешним лигандам. Известно также, что именно цитоскелет определяет ориентацию белков внеклеточного матрикса и тем самым оказывает влияние на соседние клетки.