Статья: Влияние гигантских волн на безопасность морской добычи и транспортировки углеводородов

Волны-убийцы, возникающие в результате такой фокусировки, очевидно, будут короткоживущими — быстро сбежавшиеся волновые гребни (впадины) так же быстро разбегутся. Эта особенность наблюдается для реальных волн-убийц и подтверждается результатами численного моделирования в рамках слабонелинейной теории и численного решения полных уравнений гидродинамики.

Интересно, что волны, возникающие в результате линейной фокусировки, могут быть как волнами возвышения, так и волнами-впадинами. Волны-убийцы, имеющие вид впадин, довольно часто наблюдаются в океане и представляют серьезную опасность для судов из-за трудности их своевременного обнаружения. Одна из встреч с такой волной описана в работе [13]. При вполне обычной погоде и волнении 3-4 балла танкер «Таганрогский залив» неожиданно «провалился» (рис. 5). Палуба, возвышавшаяся над уровнем спокойного моря на высоте 7 м, была залита слоем воды более двух метров. Один из матросов, работавших в это время на баке, был тяжело травмирован. Инцидент произошел у побережья Южной Африки вблизи стрежня течения Агульяс.

Области морских течений рассматриваются как области наиболее вероятного появления волн-убийц [14]. Неоднородности течения (равно как и неоднородности рельефа дна) могут служить своеобразными линзами, фокусирующими волновую энергию в определенных областях. Характерная картина фокусировки-дефокусировки волн прибрежными течениями и неоднородностями глубины показана на рис. 6. Такая фокусировка не повышает частоты возникновения волн-убийц, как это определяется формальным критерием (1), но она, очевидно, способна существенно увеличить абсолютные амплитуды волн, а значит, и возможные катастрофические последствия столкновения с этими волнами.

Для того чтобы наглядно представить себе, как работают два описанных выше линейных механизма образования волн-убийц, рассмотрим простую аналогию. В любом месте большого города возможно аномально большое скопление народа. Локальное увеличение плотности людей относительно некоторой средней плотности является аналогом возникновения волны-убийцы с помощью первого из описанных нами механизмов. Однако абсолютная величина плотности таких локальных скоплений будет неодинаковой в разных местах города. Очевидно, волны-убийцы наибольшей абсолютной амплитуды будут возникать в тех местах, где люди «фокусируются» тем или иным образом (торговые центры, вокзалы и т.п.).

Нелинейность морских волн, по-видимому, принципиальным образом влияет на вероятность появления волн-убийц. В результате нелинейности эффект сложения первоначально независимых возмущений может существенно отличаться от их простой суммы — компоненты ветрового волнения могут интенсивно обмениваться между собой энергией. Принципиальный физический эффект, связанный с нелинейностью волн, — возможность формирования волновых пакетов и уединенных волн, т.н. солитонов. Отдельные нелинейные волны (группы) могут распространяться на значительные расстояния без существенного изменения формы. Именно с нелинейностью морских волн связано то, что волны-убийцы могут образовываться не только в виде внезапного всплеска, но и существовать в течение относительно большого времени, увеличивая тем самым вероятность столкновения с судами и морскими сооружениями.

В приближении слабой нелинейности механизмы трансформации поверхностных волн изучены достаточно хорошо. Качественно нелинейность приводит к тому, что между элементарными гармониками появляется взаимодействие, гармоники обмениваются энергией, в результате чего эффект при их совпадении может быть сильнее или слабее. На языке рассмотренной выше аналогии с толпой увеличение плотности покупателей в отдельных местах (в очереди за особо привлекательным товаром) может приводить к «отталкиванию» (некоторые люди не любят больших очередей) или к «притяжению», когда становится возможным катастрофическое нарастание плотности (давка, драки и т.п.).

Наиболее известным слабонелинейным эффектом является модуляционная неустойчивость поверхностных волн (неустойчивость Бенджамена-Фейра). Две близкие по частоте волны могут сближаться из-за того, что их скорости различны (эффект частотной дисперсии), однако эти скорости зависят еще и от амплитуд волн — чем выше амплитуда, тем выше скорость распространения нелинейной волны (амплитудная дисперсия). Игра частотной и амплитудной дисперсии приводит к тому, что процесс будет повторяться квазипериодически — длинная волна, догоняя короткую, теряет энергию, а значит, скорость, и начинает отставать. Такой процесс описывается нелинейным уравнением Шредингера (2), которое является универсальным и применяется во многих областях современной физики:

. (2)

Один из сценариев поведения решений такого уравнения показан на рис. 7. Характер решений принципиальным образом определяется безразмерным параметром — крутизной волны:

ε = 2А/λ ,

где A — характерная амплитуда волны. Характерный масштаб модуляций (периодические осцилляции амплитуд волн) имеет порядок ε, т.е. каждые 1/ε периодов интенсивность волнения будет достигать некоторого максимума. Это явление периодического изменения амплитуды волн хорошо известно морякам и всем, кто видел картину И. Айвазовского «Девятый вал». Крутизна морских волн (исключая волны-убийцы) даже в самых суровых штормовых условиях редко превышает 0,1, и 9-е (10-е, 11-е и т.д.) валы очень хорошо чувствуются людьми, страдающими морской болезнью.

Эффекты сильной нелинейности морских волн изучены недостаточно хорошо. Физические модели, допускающие детальный математический анализ, в этом случае практически отсутствуют, и основными инструментами исследования являются эксперименты (лабораторный и морской) и численное моделирование.

Сценарий образования волн-убийц в этом случае может быть представлен следующим образом [15,16]. При относительно малой крутизне волн и первоначально однородном волновом поле происходит развитие модуляционной неустойчивости, которая может приводить к появлению устойчивых квазистационарных волновых пакетов. Сталкиваясь, такие пакеты могут образовывать пакеты большей амплитуды и, далее, уединенные волны — солитоны. По достижении некоторой критической амплитуды такие солитоны могут становиться неустойчивыми и обрушиваться. Сценарий, подобный описанному, неоднократно наблюдался. Волны-убийцы в некоторых случаях распространяются группами из небольшого числа очень крутых волн. В качестве иллюстрации упомянем случай, описанный капитаном Фредерик-Моро — командиром учебного крейсера ВМС Франции «Жанна д'Арк» [17].

5 февраля 1963 г. крейсер «Жанна д'Арк» находился в 430 милях к юго-востоку от Токио. Был западный ветер 15-20 м/с, волнение 7 баллов с запада высотой 7-8 м. Корабль находился в дрейфе, курс 2 румба относительно направления волнения; заданный курс 245-250°, причем рулевой с трудом удерживал судно на заданном курсе. Один из винтов был незадолго до этого поврежден; винт правого борта позволял поддерживать скорость хода 4 узла.

В 09.47 судового времени впереди по курсу была замечена группа больших обрушивающихся волн сразу за полосой относительно спокойной воды (высота волн 4-5 м). Капитан немедленно скомандовал «25 градусов влево» для того, чтобы встретить волны наиболее выгодным образом и уберечь единственный работающий винт. Судно успело повернуться на 15° и встретило первую волну по направлению 2 румба к борту; высота волны была около 15 м.

Эта волна бросила судно влево таким образом, что оно оказалось во впадине волны с дифферентом около 15° и сильным креном около 30° на правый борт. Судно повернулось еще на 20° влево. Капитан скомандовал «прямо руля» и затем «25 градусов вправо». В провале между первой и второй волнами судно почти встало на ровный киль, но было настигнуто второй волной, положившей судно на правый борт с креном около 35°. Во время выхода из крена левый (высокий) борт находился под водой. Вахтенные видели плавающими спасательные буи, закрепленные на второй палубе; один из буев был потерян. Третья волна имела несколько меньшую амплитуду и была пройдена относительно легко.

Инцидент с «Жанной д'Арк» известен как «Великолепная тройка». В описании этого случая эксперты отмечают следующие характерные черты:

1. Аномальная высота (15-20 м) волн и исключительно крутой (почти вертикальный) передний фронт.

2. Малое расстояние между последовательными гребнями (около 100 м).

3. Направление распространения группы отличалось на 20-30° от основного направления волн.

4. Высокая скорость распространения группы (около 10 м/с).

5. Компактность группы в поперечном направлении (ширина группы составляла 600-800 м); высоты резко спадали по краям.

Все отмеченные черты являются характерными для сильно нелинейных волн и хорошо согласуются с приведенным выше теоретическим сценарием, подтвержденным численным моделированием.

Рассмотренные примеры показывают как практическую важность проблемы предсказания появления волн-убийц, так и серьезные трудности решения этой проблемы. В 2000-2003 гг. были развернуты масштабные работы в рамках специального проекта MaxWave (http://w3g.gkss.de/projects/maxwave), поддержанного Европейской Комиссией и ESA. В проекте участвовало 11 групп из Германии, Великобритании, Норвегии, Бельгии, Португалии, Франции и Польши. Тематика волн-убийц продолжает горячо обсуждаться на специально организованных инженерно-научных совещаниях, последнее такое обсуждение с участием российских специалистов состоялось в рамках недели моских технологий Sea Tech Week в г. Брест (Франция) в октябре 2004 г. В течение последних пяти лет на ежегодных ассамблеях European Geosciences Union организуется секция «Волны-убийцы и наводнения».

В России проблемой гигантских волн — волн-убийц занимаются исследовательские группы в Институте океанологии им. П.П. Ширшова РАН, Институте теоретической физики им. Л.Д. Ландау РАН, Институте прикладной физики РАН и в НИИ Арктики и Антарктики. В недавно вышедшей книге сотрудников Института прикладной физики РАН [11] наиболее полно представлено современное состояние экспериментальных и теоретических исследований по проблеме волн-убийц. Следует признать, что российские исследования по этой проблеме в основном ведутся при более чем скромной финансовой поддержке Российского фонда фундаментальных исследований. Дальнейшее развитие этих исследований и практическая реализация результатов невозможна без внимания организаций ТЭК, реально заинтересованных в решении проблем безопасности морских сооружений и судов.

Список литературы

1. Haver S. Freak Waves: A suggested definition and possible consequences for marine structures / Rogue Waves-2004, Brest, France (http://www.ifremer.fr/web-com/stw2004/rw).

К-во Просмотров: 435
Бесплатно скачать Статья: Влияние гигантских волн на безопасность морской добычи и транспортировки углеводородов