Статья: Замкнутые инвариантные пространства функций на кватернионных сферах

Обозначим через инвариантную относительно вращений положительную борелевскую меру на S4n-1, для которой .

Следствие 1. Пространство является прямой суммой попарно ортогональных пространств P(p,q,r).

Следствие 2. Справедливы утверждения: a) В P(p1,q1,r1) и P(p2,q2,r2) при n>1 реализуются эквивалентные представления тогда и только тогда, когда p1+q1=p2+q2 и r1=r2.

b) При n=1 в H(p1,q2) и H(p2,q2) реализуются эквивалентные представления тогда и только тогда, когда p1+q1=p2+q2.

Пусть Ws,r и Ws - пространства линейных комбинаций векторов и соответственно с комплексными коэффициентами, . Введем также пространства и при n>1.

Следствие 3. Ws,r и Ws - пространства старших векторов неприводимых представлений со старшим весом и s соответственно. Сплетающие операторы неприводимых представлений можно выразить как многочлены от операторов L1 и L2.

Более подробные сведения из теории представлений можно найти, например, в [3].

3. Инвариантные пространства функций на S4n-1.

Пространство Y на сфере S4n-1 назовем инвариантным, если для всех f из Y и всех g из Sp(n) f*g лежит в Y. Неприводимость представления группы Ли Sp(n) эквивалентна неприводимости представления комплексификации ее алгебры Ли sp(n,C), поэтому пространства P(p,q,r) и H(p,q) при n=1 инвариантны.

Если Y - инвариантное замкнутое подпространство , то также инвариантно и ортогональная проекция коммутирует с Sp(n). Это верно также для ортогональных проекций и .

Когда в пространствах V и W реализуются неприводимые представления, пространство сплетающих операторов из V в W либо одномерно (если представления эквивалентны), либо пусто. Отсюда, из следствия 2 теоремы 1 и предложения 1 вытекает

Предложение 3. Пусть n>1 и линейное отображение коммутирует с Sp(n). Тогда

1) если или , то T=0.

2) если r1=r2 и p1+q1=p2+q2, то найдется константа C, такая что при T=CL2p1-p2, при T=CL1p2-p1.

Обозначим через неприводимое инвариантное пространство со старшим вектором , а через -замыкание пространства Y.

Теорема 2. Если Y - замкнутое инвариантное подпространство , то , .

Доказательство. Пусть n>1 и тройка (p,q,r) такая, что . Так как Y инвариантно и коммутирует с Sp(n), то - нетривиальное инвариантное подпространство P(p,q,r). Значит, Пусть и Y1 - ортогональное дополнение к Y0 в Y. Тогда Y0 инвариантно как ядро оператора, коммутирующего с Sp(n), значит Y1 также инвариантно. Более того, - изоморфизм, обратный к которому обозначим

Выберем другую тройку (p',q',r') и рассмотрим отображение Оно коммутирует с Sp(n) и переводит P(p,q,r) в P(p',q',r'). Значит, по предложению 3, для всех (p',q',r'), таких что

Тогда Y1 - подпространство . Рассмотрим и содержащее его минимальное инвариантное пространство, оно совпадает с Y1.

Пользуясь теоремой 1, получаем нужный результат. Случай n=1 доказывается аналогично.

Пусть далее X обозначает одно из пространств , и C(S4n-1). Как следствие теоремы об общем виде линейного ограниченного функционала на получается

Предложение 4. При n>1 для всех троек (p,q,r) и всех точек z на S4n-1 найдется полином Kz из P(p,q,r) такой, что для любой функции f из

Для всех пар (p,q) и всех точек z на S3 найдется полином Kz из H(p,q) такой, что для любой функции f из

Следствие. Операторы и продолжаются до непрерывных операторов на

Далее потребуются следующие две леммы, которые приводятся без доказательства.

Лемма 1. Если Y - замкнутое инвариантное подпространство X, то плотно в Y.

Лемма 2. Если Y инвариантное подпространство C(S4n-1), непрерывная функция g не лежит в равномерном замыкании Y, то g не лежит и в L2-замыкании Y.

Докажем основной результат данной работы.

Теорема 3. Если Y - инвариантное подпространство X и - из теоремы 2, то .

К-во Просмотров: 186
Бесплатно скачать Статья: Замкнутые инвариантные пространства функций на кватернионных сферах