Учебное пособие: Физические и химические свойства

Относительное сужение (после разрыва) Ψ это отношение разности начальной и минимальной площадей (Fo - Fк) поперечного сечения образца после разрыва к начальной площади Fo поперечного сечения, выраженное в про центах: Ψ = [( F0 – Fk ) / Fо] 100%.

Чем больше значения относительного удлине­ния и сужения для материала, тем он более пла­стичен. У хрупких материалов эти значения близ­ки к нулю. Хрупкость конструкционного матери­ала является отрицательным свойством.

Ударная вязкость, т. е. способность ма­териала сопротивляться динамическим нагруз­кам, определяется как отношение затраченной на излом образца работы W (в МДж) к площади его поперечного сечения F (в м2 ) в месте надре­за KC=W/F.

Для испытания (ГОСТ 9454—78) изготовляют специальные стандартные образцы, имеющие форму квадратных брусочков с надрезом. Испы­тывают образец на маятниковых копрах. Свобод­но падающий маятник копра ударяет по образцу со стороны, противоположной надрезу. При этом фиксируется работа.

Определение ударной вязкости особенно важ­но для некоторых металлов, работающих при минусовых температурах и проявляющих склон­ность к хладноломкости. Чем ниже порог хлад­ноломкости, т. е. температура, при которой вяз­кое разрушение материала переходит в хрупкое, и больше запас вязкости материала, тем больше ударная вязкость материала. Хладноломкость-снижение ударной вязкости при низких темпе­ратурах.

Циклическая вязкость — это способ­ность материалов поглощать энергию при пов­торно-переменных нагрузках. Материалы с высо­кой циклической вязкостью быстро гасят вибра­ции, которые часто являются причиной прежде­временного разрушения. Например, чугун, имею­щий высокую циклическую вязкость, в некото­рых случаях (для станин и других корпусных де­талей) является более ценным материалом, чем углеродистая сталь.

Твердостью называют способность мате­риала сопротивляться проникновению в него дру­гого, более твердого тела. Высокой твердостью должны обладать металлорежущие инструмен­ты: резцы, сверла, фрезы, а также поверхностно-упрочненные детали. Твердость металла определяют способами Бринелля, Роквелла и Виккерса (рис. 10).

Способ Бринелля (ГОСТ 9012—59) осно­ван на том, что в плоскую поверхность металла вдавливают под постоянной нагрузкой стальной

Рис. 10. Определение твердости металла методами Бринеллн (а), Роквелла (б) и Виккерса (в)

закаленный шарик. Диаметр шарика и величину нагрузки устанавливают в зависимости от твер­дости и толщины испытываемого металла. Твер­дость по Бринеллю определяют на твердомере ГШ (твердомер шариковый). Испытание прово­дят следующим образом. На поверхности образ­ца, твердость которого нужно измерить, напиль­ником или абразивным кругом зачищают пло­щадку размером 3—5 см2 . Образец ставят на столик прибора и поднимают до соприкоснове­ния со стальным шариком, который укреплен в шпинделе прибора. Груз опускается и вдавлива­ет шарик в испытываемый образец. На поверхно­сти металла образуется отпечаток. Чем больше отпечаток, тем металл мягче.

За меру твердости НВ принимают отношение нагрузки к площади поверхности отпечатка диа­метром d и глубиной t, который образуется при вдавливании силой Р шарика диаметра D (см. рис. 10,а).

Числовое значение твердости определяют так:

измеряют диаметр отпечатка с помощью оптиче­ской лупы (с делениями) и по полученному зна­чению находят в таблице, приложенной к ГОСТу, соответствующее число твердости.

Преимущество способа Бринелля заключается в простоте испытания и точности получаемых ре­зультатов. Способом Бринелля не рекомендуется измерять твердость материалов с НВ>450, на­пример закаленной стали, так как при измерении шарик деформируется и показания искажаются.

Для испытания твердых материалов применяют способ Роквелла (ГОСТ 9013—59). В образец вдавливают алмазный конус с углом при вершине 120° или стальной закаленный ша­рик диаметром 1,59 мм . Твердость по Роквеллу измеряется в условных единицах. Условная ве­личина единицы твердости соответствует осевому перемещению наконечника на 0,002 мм . Испыта­ние проводят на приборе ТК. Значение твердости определяется по глубине отпечатка h и отсчиты­вают по циферблату индикатора, установленно­му на приборе. Во всех случаях предваритель­ная нагрузка Ро равна 100 H.

При испытании металлов с высокой твердо­стью применяют, алмазный конус и общую на­грузку P = Po + P1 = 1500 H. Твердость отсчитыва­ют по шкале «С» и обозначают HRC.

Если при испытании берется стальной шарик и общая нагрузка 1000 H, то твердость отсчиты­вается по шкале «В» и обозначается HRB.

При испытании очень твердых или тонких из­делий используют алмазный конус и общую на­грузку 600 Н. Твердость отсчитывается по шкале «А» и обозначается HRA. Пример обозначения твердости по Роквеллу: HRC 50 -— твердость 50 по шкале «С».

При определении твердости способом Виккерса (ГОСТ 2999—75) в качестве вдавливае­мого в материал наконечника используют четы­рехгранную алмазную пирамиду с углом при вершине 136°. При испытаниях применяют на­грузки от 50 до 1000 Н (меньшие значения на­грузки для определения твердости тонких изде­лий и твердых, упрочненных поверхностных сло­ев металла). Числовое значение твердости опре­деляют так: замеряют длины обеих диагоналей отпечатка после снятия нагрузки и с помощью микроскопа и по полученному среднему арифметическому значению длины диагонали находят в таблице соответствующее число твердости. При­мер обозначения твердости по Виккерсу — HV 500.

Для оценки твердости металлов в малых объ­емах, например, на зернах металла или его структурных составляющих применяют способ определения микротвердости. Наконечник (индентор) прибора представляет собой алмаз­ную четырехгранную пирамиду (с углом при вер­шине 136о , таким же как и у пирамиды при испы­тании по Виккерсу). Нагрузка на индентор не­велика и составляет 0,05—5 Н. а размер отпечат­ка 5—30 мкм. Испытание проводят на оптиче­ском микроскопе ПМТ-3, снабженном механиз­мом нагружения. Микротвердость оценивают по величине диагонали отпечатка.

Усталостью называют процесс постепен­ного накопления повреждений материала под действием повторно-переменных напряжений, приводящий к образованию трещин и разруше­нию. Усталость металла обусловлена концентра­цией напряжений в отдельных его объемах, в ко­торых имеются неметаллические включения, га­зовые пузыри, различные местные дефекты и т. д. Характерным является усталостный из­лом, образующийся после разрушения образца в результате многократного нагружения (рис. 11) и состоящий из двух разных по внешнему виду частей. Одна часть / излома с ровной (затертой) поверхностью образуется вследствие трения по­верхностей в области трещин, возникших от действия повторно-переменных нагрузок, другая

Рис. 11. .Устатолостный излом

часть 2 с зернистым изломом возникает в момент разрушения образца. Испытания на усталость проводят на специальных машинах. Наиболее распространены машины для повторно-перемен­ного изгибания вращающегося образца, закреп­ленного одним или обоими концами, а также ма­шины для испытаний на растяжение — сжатие и на повторно-переменное кручение. В результа­те испытаний определяют предел выносливости, характеризующий сопротивление усталости.

§ 5. ТЕХНОЛОГИЧЕСКИЕ И ЭКСПЛУАТАЦИОННЫЕ СВОЙСТВА

Технологические свойства. Эти свойства ха­рактеризуют способность металлов подвергаться обработке в холодном и горячем состояниях. Тех­нологические свойства определяют при техноло­гических пробах, которые дают качественную оценку пригодности металлов к тем или иным способам обработки. Образец, подвергнутый технологической пробе (рис. 12), осматривают. Признаком того, что образец выдержал испытание, является отсутствие трещин, надрывов, расслоения или излома. К основным технологическими свойствам относят: обрабатываемость резанием, свариваемость, ковкость, литейные свойства и др.

Обрабатываемость резанием — одна из важнейших технологических свойств, потому что подавляющее большинство заготовок, а так же деталей сварных узлов и конструкций подвергается механической обработке. Одни металлы обрабатываются хорошо до получения чистой и гладкой поверхности, другие же, имеющие высокую твердость, плохо. Очень вязкие металлы с низкой твердостью также плохо обрабатываются: поверхность получается шероховатой, с задира­ми. Улучшить обрабатываемость, например, ста­ли можно термической обработкой, понижая или повышая ее твердость.

Свариваемость — способность металлов образовывать сварное соединение, свойства которого близки к свойствам основного металла. Ее определяют пробой сваренного образца на загиб или растяжение.

К-во Просмотров: 192
Бесплатно скачать Учебное пособие: Физические и химические свойства