Учебное пособие: Физические основы распространения излучения по оптическому волокну
градиентных световодов дисперсионные константы пропорциональны, тогда как для волокон со ступенчатым профилем показателя преломления они пропорциональны;
При условии
становится очевидным преимущества градиентных волокон. Численные оценки по (9.9)—(9.13) показывают, что при
приведенное уширение импульса составляет 20 нс/км для двухслойного световода, 130 и 15 пс/км для градиентного параболического (
= 2) и оптимизированного' (
»1,97). Отсюда следует, в частности, что оптимизация достигается лишь при очень высокой точности реализации требуемого значения
Минимальные приведенные значения экспериментально получить не удается из-за дисперсии материала. Приведенная к единице длины постоянная времени материальной дисперсии приблизительно одинакова для всех волноводных мод и зависит лишь от ширины спектра излучения и дисперсионных свойств материала:
Используя (9.1), можно при необходимости перейти от Экспериментальная дисперсионная кривая для кварца, легированного фосфором (материал сердечника практически всех основных типов световодов для ВОЛС), представленная на рис. 9.3,. показывает, что при λ≈3 мкм
=0 и соответственно
= 0. Именно этим прежде всего и определяется значимость спектральной области вблизи λ =1,3 мкм.
Расчет показывает, чтов многомодовых световодах эффекты шнутримодовой дисперсии оказываются пренебрежимо малыми по сравнению с другими видами искажений и, в частности, с дисперсией материала. Поэтому, переходя к общей оценке, внутри-.модовую дисперсию не учитываем.
Рассмотренные эффекты — волноводная и материальная дисперсия — действуют одновременно; решение задачи уширения им-лульса при этом резко усложняется: наряду с членами, которые приводят к значениями
появляется еще суперпозиционный член
. В первом приближении можно считать, что суммарное уширение импульса
Характерно, что не соответствуют в точности значениям, получаемым из (9.11), (9.13), (9.14). Приведенные на рис. 9.4 расчетные кривые иллюстрируют сказанное и позволяют сделать следующие выводы: при учете двух механизмов дисперсии значение
заметно сдвигается относительно точки
, в градиентном световоде, возбуждаемом светодиодом, уширение импульса почти полностью определяется материальной дисперсией -и оптимизация профиля
заметных преимуществ не дает; в оптимизированном многомодовом градиентном световоде, возбуждаемом монохроматическим лазером, дисперсионное уширение .импульса может быть снижено до 15 пс/км (теоретический предел).
Рис. 9.3. Спектральная характеристика дисперсии кварца
Рис.9.4. Теоретическая зависимость от параметра
градиентного световода:
1 — учитывается только модовая дисперсия; 2—=15 нм (светодиод); 8 —
= 1 нм (инжекционный лазер); 4—
= 0,2 нм (лазер с распределенной обратной связью); кривые 2—4 рассчитаны для
=0,9 мкм
Отметим еще один очень важный для дисперсионных расчетов эффект — связь мод в многомодовых световодах. Выше предполагалось, что отдельные моды (или лучи с разными углами падения) распространяются по волокну независимо друг •от друга и не смешиваются. Естественно, что идеализация и наличие в реальном световоде тех или иных нерегулярностей (флуктуации состава и соответственно величины п, непостоянства геометрии, микроизгибов, нарушений на границе раздела сердцевина— оболочка и т. п.) приводят к «перекачке» энергии между модами. В представлениях геометрической оптики это значит, -что луч с углом падения преломившись на неоднородности, меняет угол распространения на
Возможность проявления этого эффекта становится очевиднее, если вспомнить, что на 1 км пути укладывается около 109 длин волн света и в то же время происходит более 106 актов отражения светового луча от границы сердцевина — оболочка. Связь или смешение мод приводит ж тому, что часть энергии медленных мод переходит в быстрые .и наоборот; это ведет к некоторому выравниванию времен распространения медленных и быстрых мод — в итоге дисперсия уменьшается. Математическое описание явления в общем виде «очень сложное, важнейший результат смешения мод состоит в •следующем:
где— характеристическое расстояние, на котором устанавливается постоянный модовый состав. Дисперсионное размытие светового импульса «набегает» не пропорционально длине световода L, а пропорционально
т. е. значительно слабее. Величина L0 может быть определена лишь экспериментально, она тем больше, чем совершеннее световод, и может достигать десятков километров. Естественно, что при
сохраняется прежний закон:
5. Затухание
Причинами потерь оптической мощности при распространении сигнала по волокну являются различные виды поглощения, а также обусловленная рассеянием деформация углового распределения лучевого потока и вытекание возникающих внеапертурных лучей из сердцевины.
Для количественной оценки потерь пропускания используется удельное затухание оптического сигнала, выраженное в дБ/км,
где— мощности каналируемого излучения на входе и
выходе световода длиной L км. Если имеются различные невзаимодействующие механизмы потерь, то определенные по (9.17) .затухания складываются, т. е.
где— удельное затухание, вносимое
механизмом потерь.
Рассмотрим наиболее существенные из этих механизмов.
1. Фундаментальные потери, присущие материалу и принципиально неустранимые. Выделяют два вида фундаментальных потерь. Один вид — собственное поглощение в материале световода (потери|, которое в УФ-области связано с электронными переходами между разрешенными энергетическими уровнями атомов, а в ИК-области — с многофотонным и колебательным возбуждением молекул. «Хвосты» полос поглощения могут доходить с рабочего диапазона длин волн световода, что проявится в затухании. Экспериментально установлено, что для кварца уже при
0,6 мкм УФ-поглощение становится меньше 1 дБ/км, а ИК-поглощение, эффективное при
8... 12 мкм, при
1 мкм вообще не сказывается.
Другой вид фундаментальных потерь — релеевское рассеяние на различного рода нерегулярностях, приводящее к потерям
где постояннаятем меньше, чем ниже температура «замора-живания» флуктуации состава световода, охлаждаемого при изготовлении.
Для кварца при его тщательной обработке экспериментально получено 0,7 дБ/(км-мкм-4),что для
0,82 мкм дает
~1,5 дБ/км, а при
=1,55 мкм
^0,14 дБ/км. Следует подчеркнуть, что
не универсальная константа, она зависит и от выбора материала световода, и от технологии его обработки, т. е. принципиально можно ожидать получения меньших, чем достигнуто в кварце, релеевских потерь. Наиболее характерным моментом в (9.19) является сильная зависимость
от
из чего следует, что в дальней ИК-области релеевские потери становятся пренебрежимо малыми.
2. Примесное поглощение, обусловленное наличием примесей (потери ). В кварце такими примесями, проявляющимися как центры окраски, являются ионы металлов группы медь — хром, а именно медь, хром, магний, никель, железо. Однако при современных методах очистки роль примесей в кварце оказывается несущественной; значение их как центров окраски сохраняется лишь для многокомпонентных стекол.