Учебное пособие: Фотоелектричний ефект
Тема 1. Фотоелектричний ефект
План
1. Предмет, методи і завдання квантової фізики
2. Закони фотоефекту. Дослідження Столєтова
3. Квантова теорія фотоефекту
4.Фотоелементи та їх застосування
1. Предмет, методи і завдання квантової фізики
Загальні відомості
Як вже зазначалось, в кінці XIX і на початку XX ст. було відкрито ряд фізичних явищ, які неспроможна пояснити класична фізика. У зв'язку з цим виникла необхідність створення нової фізичної теорії, яку назвали квантовою теорією матерії, або квантовою фізикою.
Квантова фізика вивчає процеси, що відбуваються у мікросвіті — в світі молекул, атомів, атомних ядер, елементарних частинок. Оскільки властивості макроскопічних тіл зумовлені рухом і взаємодією їх складових — мікрочастинок, то закони квантової фізики дають змогу пояснити більшість явищ макросвіту.
Квантова механіка, квантова статистика і квантова теорія поля в сукупності складають квантову теорію матерії, або квантову фізику.
Квантова механіка — теорія руху мікрочастинок і їх систем, теорія явищ субатомного масштабу та їх впливу на макроявища.
Перший підготовчий крок до створення квантової механіки зробив М. Планк. Він для пояснення розподілу енергії в спектрі випромінювання абсолютно чорного тіла висунув гіпотезу про те, що енергія атомів-випромінювачів може змінюватися дискретними порціями — квантами. Другий крок зробив А. Ейнштейн, який ввів у 1905 р. поняття фотона (кванта електромагнітного поля) і дав тлумачення зовнішньому фотоефекту. Далі, у 1913 p. H. Бор використав ідею квантів і штучно введені постулати для пояснення станів водневоподібних атомів і розшифрування їхніх спектрів.
У 1924 р. Л. де Бройль висунув гіпотезу про корпускулярно-хвильовий дуалізм матеріальних частинок, основна ідея якої про хвильові властивості частинок була в 1927 р. підтверджена К. Де-віссоном і Л. Джермером (США), Дж. П. Томсоном (Шотландія) і радянським фізиком П. С. Тартаковським.
Накопичення фактів привело до становлення у 1925—1928 pp. сучасної квантової механіки. У цей період В. Гейзенберг розробив матричну теорію кінематики і динаміки мікрочастинок; Е. Шредінгер, спираючись на ідеї Л. де Бройля, у 1926 р. дістав диференціальне рівняння руху мікрочастинок; М. Борн у 1927 р. дав статистичну інтерпретацію квантово-механічного опису станів мікрочастинок або їх систем; П. Дірак і В. Паулі заклали основи релятивістської квантової механіки. Тоді ж було сформульовано принцип невизначеності Гейзенберга, принцип Паулі, принцип відповідності Бора.
У наступні роки великий вклад у розвиток квантової фізики внесли Г. Лондон, Е. Фермі, Р. Фейнман, М. Гелл-Манн, В.О. Фок, Л.Д. Ландау, І.Є. Тамм, Д.І- Блохінцев, М.М. Боголюбов, Я.І- Френкель та інші вчені.
Квантова механіка являє собою фізичну теорію, яка описує явища атомного масштабу, тобто рух елементарних частинок та систем, що з них складаються. При цьому вважається, що мікрочастинки рухаються із швидкостями, значно меншими від швидкості світла.
Процеси з участю релятивістських мікрочастинок (частинок, що рухаються зі швидкостями, близькими до швидкості світла) супроводяться, як правило, зміною кількості частинок, їх народженням та поглинанням. Такі процеси розглядаються у квантовій теорії поля.
Властивості системи з великою кількістю частинок, рух яких описується законами квантової механіки, вивчаються у квантовій статистиці.
Успіхи квантової фізики відіграли важливу роль у науково-технічній революції. Напівпровідникова і квантова електроніка, ядерна енергетика, навіть можливість здійснення в земних умовах реакції термоядерного синтезу зв'язані в кінцевому результаті з квантовими законами. Розвиток квантової фізики сприяє розумінню єдності світу, побудові єдиної фізичної картини світу.
2. Закони фотоефекту. Дослідження Столєтова
Під час проведення дослідів з метою одержання електромагнітних хвиль Г.Герц у 1887 р. помітив, що розряд між металевими електродами стає інтенсивнішим, якщо їх освітлювати електричною дугою. Це явище названо фотоелектричним ефектом.
Після відкриття електрона (1897 р.) ф. Ленард і Дж. Томсон у 1898 р. довели експериментально, що фотоефект являє собою вивільнення електронів з металевих катодів під дією світла. Явище фотоефекту — один з проявів взаємодії світла з речовиною, який розкриває квантову природу світла. Фотоефект як самостійне фізичне явище детально вивчав О.Г. Столєтов у 1888—1890 pp. Він виявив, що при освітленні ультрафіолетовими променями зазнають розряду тільки тіла, заряджені негативно. Схема установки для дослідження фотоефекту показана на рис. 9.1.
Світло через кварцеве віконце О падає на катод К, виготовлений з досліджуваного металу. Катод і анод розміщені у вакуумній трубці Т. Напруга між катодом і анодом змінюється за допомогою потенціометра П.
Дослідження залежності фотоструму від різниці потенціалів між катодом і анодом при опромінюванні катода монохроматичним світлом показали, що фотострум існує не тільки тоді, коли > 0, але й тоді, коли < 0. Він припиняється для даної речовини катода тільки при певній величині від'ємного значення різниці потенціалів , яка називається гальмівною напругою. її величина дає змогу визначити кінетичну енергію вивільнених електронів. Гальмівна напруга не залежить від інтенсивності світла.
Сила фотоструму зростає зі збільшенням різниці потенціалів і при деякому значенні напруги U досягає насичення (рис. 9.2). Узагальнюючи результати експериментальних даних, встановлено такі закономірності фотоефекту: при сталому спектральному складі світла сила фотоструму / насичення прямо пропорційна світловому потоку Ф, що падає на катод (рис. 9.3); початкова кінетична енергія вивільнених світлом електронів залежить лінійно від частоти світла і не залежить від його інтенсивності (рис. 9.4); фотоефект не виникає, якщо частота світла менша від деякої характерної для даного металу величини vmin; фотоефект — явище безінерційне, тобто з припиненням освітлення поверхні він припиняється.
З погляду хвильової теорії можна пояснити тільки першу закономірність (закон Столєтова). Електрони в металі мають набувати прискорення під дією електричного поля електромагнітної хвилі. Якщо це поле сильне, то електрон зможе набути енергії для подолання потенціального бар'єру і вилетіти за межі металу. При малих інтенсивностях світла електрони не вилітають. При досягненні певної величини інтенсивності світла, характерної для даного металу, відбуватиметься вивільнення електронів.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--