Учебное пособие: Функционально-графический подход к решению задач с параметрами

(Слайд 1 -2)

Введение

Изучение многих физических процессов и геометрических закономерностей часто приводит к решению задач с параметрами.

Задачи с параметрами вызывают большие затруднения. Это связано с тем, что решение таких задач требует не только знания свойств функций и уравнений, умения выполнять алгебраические преобразования, но также высокой логической культуры и хорошей техники исследования.

(Слайд 3)

Математическое понятие параметра

Параметром называются коэффициенты при неизвестных или свободные члены, заданные не конкретными числовыми значениями, а обозначенные буквами.

Решить задачу с параметром этозначит, для каждого значения параметра найти значения x , удовлетворяющие условию этой задачи.

(к 4 слайду)

Выделяют несколько типов задач с параметрами..

Основные типы задач с параметрами:

Тип 1 . Задачи, которые необходимо решить для всех значений параметра или для значений параметра из заданного промежутка.

Тип 2. Задачи, где требуется найти количество решений в зависимости от значения параметра.

Тип 3. Задачи, где необходимо найти значения параметра, при которых задача имеет заданное количество решений

Тип 4. Задачи, в которых необходимо найти значения параметра, при которых множество решений удовлетворяет заданным условиям.

(к 5 слайду)

Основные методы решения задач:

-аналитический, т е с помощью алгебраических выражений

-графический, т е с помощью построения графиков функций

-решение относительно параметра, т е в случае, когда параметр считается еще одной переменной..

Наш доклад посвящен второму способу решения задач с параметрами.

(к 6 слайду) построение графиков функций.

При этом важно знать основные правила построения функций, которые можно рассмотреть на примере графика функции у = |х|.

График функции у = |х- а| получается из графика функции у = |х| с помощью параллельного переноса вправо если а больше 0 на а единиц, и влево если а меньше 0 на –а единиц.

График функции у = |х| + b получается из графика функции у = |х| при параллельном переносе вверх на b единиц если b больше 0, и вниз на – b единиц если b меньше 0.

Задача1

Задана функция у = f(х). Нужно указать количество корней уравнения f(х) =а при всех значениях параметра.

Данная задача относится ко 2му типу задач с параметрами. Здесь возможно несколько случаев: при а < - 5 уравнение имеет 1 корень, при а =- 5 - 2 корня, при - 5<a<- 2- три корня, при а = - 2- четыре корня, при - 2<a<1- пять корней, при а = 1 – четыре корня, при 1<a<3 – три корня, при а =3 – два корня и при а>3 – один корень.

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 200
Бесплатно скачать Учебное пособие: Функционально-графический подход к решению задач с параметрами