Учебное пособие: Геном человека
Все автоматы-секвенаторы построены по принципу метода Сэнгера, поскольку он оказался более удобным для автоматизации и комьютерной регистрации. Выпущено огромное количество автоматов и стандартных наборов реактивов для анализа. По сути, секвениро вание (то есть определение нуклеотидной последовательности ДНК) стало рутинной лаборантской работой. А метод Максама-Гилбера имеет скорее историческое, чем практическое значение.
Еще 15-20 лет назад расшифровка нуклеотидной последовательности в 1000 нуклеотидов считалась почти научным подвигом, за это можно было сразу получить степень доктора наук. Но уже к 1990 году секвенирование ДНК стало массовой технологией. А сейчас квалифицированный лаборант проделывает такую работу меньше, чем за один день.
Разработаны и другие совершенно новые методы секвенирования. Один из них базируется на возможности избирательно присоединять тяжелые атомы металлов (нерадиоактивные изотопы) к определенным нуклеотидам с последующим масс-спектрометрическим сканированием молекул ДНК, пропускаемых через тончайший (нанометровый) микрокапилляр. Устройство читает нуклеотидную последовательность практически безошибочно. При этом не нужно дорогостоящих и отнимающих уйму труда операций по химическому секвенированию, использованию наборов рестрикционных ферментов и прочих ухищрений. Метод начала использовать компания "Секвеном", зарегистрированная в городе Сан-Диего (Калифорния) и руководимая Чарлзом Кэнтором.
Другой подход основан на присоединении флюоресцентных меток к ДНК, разрезании ДНК одним или несколькими рестрикционными ферментами на достаточно протяженные куски и оптическом анализе кусков. Так как флюоресцентные метки, сорбирующиеся на индивидуальных нуклеотидах, создают для каждого участка ДНК светящуюся картинку, характерную только для него, можно сравнивать ее с имеющимися в памяти компьютеров картинками. Для этого сотрудники компании "Силера джиномикс" создали прибор оптического "обстрела" протяженных ДНК (система Visionade) и математический алгоритм Gentig. Если после оптического просмотра остаются сомнения в точности нуклеотидных последовательностей в каких-то коротких участках, только эти участки и надлежит секвенировать химически. Оптическая "стрельба" по нарезанным участкам ДНК позволила достичь небывалой скорости в секвенировании: в свое время изучение генома кишечной палочки потребовало работы нескольких сот человек в течение 12 месяцев, в то время как система Visionade помогла расшифровать этот же геном в несколько минут.
Структура генома человека (по данным секвенирования на 2001 г.)
На основе компьютерных алгоритмов, построенных на современных представлениях об общей структуре гена и о белковых доменах, было рассчитано количество генов, кодирующих белки в геноме человека. Международный консорциум определил 31 780 белок-кодирующих генов, а фирма Целера Геномикс обнаружила 39 114 таких генов.
Показано, что типичный ген человека состоит примерно из 28000 н.п. и имеет 8 экзонов, его кодирующая последовательность 1340 н.п., этот ген кодирует 447 аминокислот.
Самым большим геном, найденным в геноме человека, является ген мышечного белка дистрофина (2,4 • 106 н. п.). Фибриллярный белок титин, ответственный за пассивную эластичность скелетных мышц, состоит из 27 000 аминокислотных остатков. Его ген содержит 234 экзона. Это наибольшее количество экзонов, пока найденное в белок-кодирующих генах человека. Структура и организация генов человека много сложнее, чем структура генов других эукариот. Очень часто они прерываются большими интронами, 35 % генов человека могут считываться с разных рамок, а 40 % РНК подвергаются альтернативному сплайсингу. Таким образом, одна последовательность ДНК может кодировать более одного вида мРНК.
По сравнению с геномами других эукариотических организмов у человека большее распространение получили гены, участвующие в обеспечении иммунной защиты; в развитии нервной системы (нейротрофические факторы, факторы роста нервов), сигнальных молекул, миелиновых белков, потенциал-управляемых ионных каналов и синаптических рецепторных белков; в построении цитоскелета и движении везикул, обеспечении внутри- и межклеточной сигнализации, поддержании гомеостаза. У человека значительно большее количество генов участвует в транскрипции и трансляции. Из 2000 таких генов 900 относятся к семейству белков, содержащих «цинковые пальцы».
В целом на долю генов, кодирующих белки, приходится 2 % генома; на области, кодирующие РНК, — около 20% генома, повторяющиеся последовательности занимают более 50 % генома, причем значительная часть этой ДНК возникла за счет обратной транскрипции РНК.
Исследование структуры генома ряда прокариот и эукариот, и человека в частности, способствовало созданию науки о геномах — геномики. В нее включают изучение геномов на молекулярном, хромосомном, биохимическом и фенотипическом уровнях. Нам представлена схема, поясняющая взаимоотношения между геномикой человека и другими научными направлениями в современной биологии. Структурная и сравнительная геномика через биоинформатику переходит в новый раздел — функциональную геномику, главной задачей которой является выяснение биологических функций генных продуктов и в первую очередь белков.
У многих современных исследователей, работающих в области геномики, нет сомнений, что первое десятилетие XXI в. будет эрой функциональной геномики и биоинформатики.
В сети Интернет можно найти большое число адресов, содержащих разнообразную информацию, касающуюся генома человека:
Что можно ждать от геномных исследований в ближайшие 40 лет? Вот как сформулировал прогноз Ф.Коллинз, руководитель программы "Геном человека" (США).
2010 год
Генетическое тестирование, профилактические меры, снижающие риск заболеваний, и генная терапия до 25 наследственных заболеваний. Медсестры начинают выполнять медико-генетические процедуры.
Широко доступна преимплантационная диагностика, яростно обсуждаются ограничения в применении данного метода. В США приняты законы для предотвращения генетической дискриминации и соблюдения конфиденциальности. Не всем доступны практические приложения геномики, особенно в развивающихся странах.
2020 год
На рынке появляются лекарства от диабета, гипертонии и других заболеваний, разработанные на основе геномной информации. Терапия рака, прицельно направленная на свойства раковых клеток. Фармакогеномика становится общепринятым подходом для создания многих лекарств. Изменение способа диагностики психических заболеваний, появление новых способов их лечения, изменение отношения общества к таким заболеваниям. Демонстрация безопасности генотерапии на уровне зародышевых клеток при помощи технологии гомологичной рекомбинации.
2030 год
Определение последовательности нуклеотидов всего генома отдельного индивида станет обычной процедурой, стоимость которой менее 1000 $. Каталогизированы гены, участвующие в процессе старения. Проводятся клинические испытания по увеличению максимальной продолжительности жизни человека. Лабораторные эксперименты на человеческих клетках заменены экспериментами на компьютерных моделях. Активизируются массовые движения противников передовых технологий в США и других странах.
2040 год
Все общепринятые меры здравоохранения основаны на геномике. Определяется предрасположенность к большинству заболеваний (при/до рождения).
Доступна эффективная профилактическая медицина с учетом особенностей индивида. Болезни детектируются на ранних стадиях путем молекулярного мониторинга.
Для большинства заболеваний доступна генная терапия. Замена лекарств продуктами генов, вырабатываемыми организмом при ответе на терапию. Средняя продолжительность жизни достигнет 90 лет благодаря социоэкономическим мерам. Проходят серьезные дебаты о возможности человека контролировать собственную эволюцию.
Протеомика
Эта совершенно новая отрасль биологии, изучающая структуру и функции белков и взаимосвязи между ними, названа по аналогии с геномикой, занимавшейся геномом человека. Само рождение протеомики уже объясняет, зачем нужна была программа Геном человека. Поясним на примере перспективы нового направления
Вернемся к протеомике. Знание аминокислотных последовательностей и трехмерной структуры определенных белков позволило разработать программы сопоставления генетических последовательностей с аминокислотными, а затем программы предположительного расположения их в трехмерной структуре полипептидов. Знание трехмерной структуры позволяет быстро находить химические варианты молекул, в которых блокирован, например, активный центр, или определять положение активного центра у мутантного фермента.