Учебное пособие: Гироскоп
Для уяснения природы многообразных свойств гироскопа обратимся к некоторым основным понятиям и законам механики.
6. Некоторые сведения из механики
Удивительное на первый взгляд свойство гироскопа двигаться в направлении, перпендикулярном действующему на него усилию, полностью подчинено законам механики. Оно объясняется инертностью массы гироскопа, присущей ему, как и любому другому телу.
Наблюдения и опыты показывают, что изменение скорости и направления движения любого тела не может происходить само по себе без воздействия на него внешних сил. Согласно закону Ньютона любое тело, если на него не действуют другие тела, сохраняет состояние покоя или прямолинейного и равномерного движения.
Рис.10. Различные виды движения тел
Свободно движущееся тело А ( рис.10) стремится сохранить свое движение с постоянной скоростью v в прямолинейном направлении а b. На схеме скорость v изображена вектором в виде отрезка прямой nl, совпадающей с направлением движения ab. Стрелка на конце вектора указывает, в какую сторону по этому направлению движется тело. Длина nl вектора в условном масштабе изображает величину скорости v.
Ньютон установил также, что ускорение w тела, характеризующее изменение скорости его движения, пропорционально действующей на тело силе F и обратно пропорционально массе этого тела т, равной весу тела G, деленному на ускорение свободного падения g. Этот вывод, имеющий всеобщий характер, носит название второго закона Ньютона и может быть выражен формулой
из которой следует, что сила F, необходимая для сообщения телу ускорения до, равна массе т тела, умноженной на ускорение,
F = mw ( 1)
Из уравнения (1) следует, что для изменения скорости и направления движения тела необходимое внешнее усилие должно быть тем больше, чем больше масса тела и чем больше ускорение последнему должно быть сообщено.
Таким образом, именно масса тела обладает инертностью, или, иначе говоря, свойством сохранять свое состояние движения неизменным, которое может являться и состоянием покоя и состоянием равномерного и прямолинейного движения.
В описанном проявлении инертности массы и заключается сущность основного закона, которому движение гироскопа подчинено в такой же мере, как и движение любого другого тела.
Если на тело А, движущееся по прямой ab со скоростью у0 ( рис.10), подействовать в направлении его движения силой F, то по истечении весьма малого промежутка времени оно будет продолжать двигаться в прежнем направлении ab, но уже с новой скоростью vt .
Изменение скорости движения тела за время At и характеризует его ускорение:
Измеряя скорость в сантиметрах в секунду (см/сек), ускорение будем оценивать в сантиметрах в секунду в квадрате (см/сек2 ).
В общем случае под воздействием внешней силы тело может изменить одновременно и скорость и направление своего движения. Представим себе, что на тело А, движущееся в направлении ab со скоростью v 0 , подействовала сила F2 , направленная по линии cd, перпендикулярной ab. Под влиянием этого усилия тело получит ускорение в направлении cd, в результате чего по прошествии времени Δt оно, кроме скорости v0 в направлении ab, приобретет некоторую дополнительную скорость v2 в направлении cd.
Нетрудно определить новое направление и вычислить новую скорость v ' движения рассматриваемого тела. Как известно, направление движения будет определяться направлением диагонали параллелограмма, стороны которого равны векторам v0 и и2 , а значение суммарной скорости - длиной этой диагонали, вычисленной в соответствии с масштабом, принятым для построения векторов у0 и и2 .
Для получения ясного представления о сущности проявления основного закона движения при опытах с гироскопическими приборами необходимо выяснить возможные перемещения гироскопа в пространстве.
Движение гироскопа можно рассматривать состоящим из его вращения вокруг трех осей подвеса (рис.11). В этом случае необходимо знать величину и направление скоростей его вращения вокруг каждой из этих осей в отдельности.
Скорость вращения тел измеряют обычно либо числом оборотов в минуту, либо числом, радианов 1 в секунду. Скорость вращения в один радиан в секунду соответствует повороту рассматриваемого тела (рис.14) на угол φR , равный центральному углу, опирающемуся на дугу ab, длина которой равна радиусу окружности R.
Рис.11. Схема вращения тела вокруг оси
Так, если рассматриваемое тело в течение 1 сек. совершит один оборот, т.е. повернется на 360°, то угловая скорость его вращения, выраженная в радианах в секунду, будет равна:
Если же тело в течение 1 мин. совершает π оборотов, то величина угловой скорости определится равенством
Но одна величина угловой скорости еще не дает полного представление о характере вращательного движения. Необходимо знать положение оси в пространстве, вокруг которой происходит вращение и направление самого вращения.