Учебное пособие: Характеристика усилителя низкой частоты

Сквозная передаточная характеристика усилителя представляет собой зависимость выходного напряжения от входного. В справочниках она приводится редко, т.к. недостаточно информативна в связи с наличием огромного количества факторов, влияющих на результат. В технических характеристиках иногда попадается простейшая разновидность ее — амплитудная характеристика. Она снимается при воздействии на вход усилителя синусоидального сигнала. Идеальная характеристика должна представлять собой прямую линию, выходящую из начала координат. Угол ее наклона — это коэффициент усиления. Прежде всего, реальная характеристика не только не начинается там, где ей положено, в начале координат, а вообще до нуля не доходит. В этом районе сосредоточены все шумовые свойства усилителя, Нелинейность начального участка характеристик усилительных элементов, тепловые дрейфы, наводки и помехи, фон и многое другое. Нетрудно догадаться, что динамический диапазон усилителя (DynamicRange), под которым понимается отношение максимального выходного (входного) неискаженного напряжения к минимальному, определяется именно этим участком, а вовсе не максимальным выходным напряжением. Измерения как обычно идут на частоте 1 кГц.

Поскольку употреблено слово «неискаженного», то в условиях измерения обязательно должно быть указано, что это значит. Если речь идет о величинах более 1...3%, то можно смело сократить приведенную величину минимум вдвое. Нас не интересует диапазон хрюканья» а поскольку мы уже знаем, что на высоких частотах и при сложном сигнале искажения всегда увеличиваются, можно легко понять, как это будет выглядеть в реальных условиях. Динамический диапазон человеческою уха составляет порядка 120 дБ, диапазон звукозаписывающей аппаратуры реально не выходит за пределы 70 дБ.

По мере приближения амплитуды выходного сигнала к уровню питающего напряжения, начинается процесс клонирования, т.е. обрезания верхней части сигнала. Этот процесс сопровождается потерей информации и резким увеличением THD и IMD. Наиболее часто эти явления встречаются в переносной и автомобильной аппаратуре, где остро стоят вопросы ограниченного питающего напряжения и есть желание продекларировать наивысшую мощность, так сказать, не прикладная рук. Приведенные в настоящем руководстве интегральные усилители выпускаются солидными производителями с мировыми именами, все необходимые для разработчика параметры приведены в достаточном объеме и при грамотном использовании этих микросхем, такие вопросы не должны возникать. Многие производители, и SGS в том числе, вводят так называемый режим мягкого ограничения (Softlimiter), когда токи транзисторов выходного каскада постепенно ограничиваются, не позволяя им войти в насыщение.

Более информативной характеристикой является импульсная переходная характеристика. На вход испытуемого усилителя подается прямоугольный импульс. В таком случае, о зависимости от входного напряжения можно говорить, как о параметрической, а в качестве аргумента использовать время. Если по оси абсцисс откладывать не абсолютное значение выходного напряжения, а отношение текущего значения к установившемуся, то такая нормированная характеристика уже пригодна для сравнения различных усилителей. Посмотрев на внешний вид переходной характеристики, читатель, знакомый с теорией автоматического регулирования сразу ее узнает. Не удивительно, т.к. усилитель, охваченный обратной связью (ОС), представляет классический объект для этой теории, и для описания его применяются, естественно, те же термины.

УНЧ, особенно в интегральном исполнении, мало чем отличается от обычного операционного усилителя. Некоторые типы усилителей даже имеют вы-воды инвертирующего и неинвертирующего входов. Поэтому все, что справедливо для операционных усилителей, годится и для УНЧ. Различие заключается только в одном: все операционные усилители, но далеко не все интегральные УНЧ, являются усилителями постоянного тока.

Определим сейчас ряд параметров, которые понадобятся для обсуждения вопросов ОС. Все параметры зависят от условий измерения.

Коэффициентом усиления по напряжению при разомкнутой петле обратной связи GV или А называется отношение выходного напряжения к входному, неважно амплитудное или действующее, при отсутствии ОС. Если данный усилитель не допускает, по техническим условиям, изменения коэффициента усиления, то приводится коэффициент усиления с имеющейся внутренней обратной связью. Обозначается он также, но при этом про обратную связь ничего не говорится. Иногда приводятся оба коэффициента.

Коэффициент усиления с увеличением частоты всегда падает, поэтому в справочниках часто приводится частота единичного усиления fT (UnityGainBandwidth). Как следует из названия, это частота, на которой усиление равно единице. Практически у всех современных усилителей (о ламповых говорить не будем) на входе используется дифференциальный каскад. Это объясняется его свойствами, которые при применении в интегральных схемах делают дифференциальный каскад еще более привлекательным. Наиболее важными являются стабильность режима, возможность последовательного соединения без переходных конденсаторов, малые искажения и, наконец, способность выделять малый дифференциальный сигнал Ud на фоне большого синфазного (CommonMode, CM) сигнала UCM. Основой схемы дифференциального усилителя является пара эмиттерно связанных транзисторов, обычных или полевых. Реальные схемы значительно сложнее, но их рассмотрение не входит в нашу задачу. Понятно, что для работы схемы необходимо протекание базовых токов транзисторов, что обусловливает наличие конечного входного сопротивления. В связи с этим возникает параметр, называемый входным токам смещения (InputBiasCurrent, Iib). Он определяется, как постоянный ток, необходимый для управления входными каскадами усилителя к замеряется при нулевом выходном напряжении.


Входной ток смещения стремятся сделать как можно ниже, для чего применяют супер-Ь транзисторы и очень маленькие токи коллекторов. За это приходится расплачиваться низким коэффициентом усиления входного каскада и малой скоростью нарастания выходного напряжения.

Для усилителей часто приводится максимальное синфазное входное напряжение Vicm, которое определяется как максимально допустимое синфазное напряжение, приложенное ко входу, при котором работа выходного каскада не нарушается (PHILIPS). Как правило, можно считать, что допустимое синфазное напряжение на 3...4 В ниже напряжения питания, если в спецификации не оговорено иное.

Входные токи смещения всегда отличаются друг от друга, пусть и ненамного, но ввиду высокого входного сопротивления и достаточно высокого коэффициент усиления, на выходе получается некоторый сигнал ошибки U = GV(I1 — I2)rj. Здесь rj — внутреннее сопротивление усилителя синфазному сигналу (InputResistance), определяемое по закону Ома для любого из входов, когда второй заземлен, а выходное напряжение равно нулю, а I1 - I2 = Iia— разность входных токов (InputOffsetCurrent). Часто возникает путаница из-за того, что Bias и Offset переводятся как «смещение», aIJb и 1^ слабо отличаются по виду, да и происхождение у них одно — физическое различие между парными транзисторами. Поэтому в литературе встречается и выражение «сдвиг», применительно к термину Offset. Тогда говорят о входном напряжении сдвига или о входном токе сдвига.

Помимо синфазного входного сопротивления, различают дифференциальное входное сопротивление rid (DifferentialInputResistance), которое измеряется по закону Ома между двумя незаземленными входами усилителя в режиме малого сигнала. Синфазное сопротивление всегда значительно больше дифференциального.

Дифференциальное входное напряжение определено кaк напряжение, прикладываемое между входами усилителя, а максимальное дифференциальное входное напряжение это то, которое может выдержать данный усилитель без повреждения внутренних цепей.

Дифференциальный коэффициент усиления Кd — это отношение приращения сигнала на выходе к вызвавшему его приращению дифференциального входного напряжения. Вводится для дифференциального усилителя. Одновременно с ним определяется коэффициент усиления синфазного сигнала Ks, как отношение приращения выходного напряжения к приращению входного синфазного сигнала. В идеальном усилителе этот коэффициент строго равен нулю. Реальные усилители, даже после специальной операции по симметрированию, имеют различные коэффициенты усиления для инвертирующего и неинвертирующего входов. Численно Ks равен разности этих коэффициентов. В справочниках ни Кd, ни Кs для УНЧ никогда не приводятся. Дело в том, что для них Кd и GV это одно и то же, aKs неинтересен как таковой. Разработчиков усилителей интересует совсем другой параметр — коэффициент ослабления синфазного сигнала CMRR (CommonModeRejectionRatio, рус. КОСС), который представляет не что иное, как отношение KD/KS.

CMRR, как правило, имеет достаточно большую величину порядка 60...100 дБ. Но как все параметры усилителя, носит комплексный характер, благодаря наличию паразитных емкостей и уменьшается с ростом частоты. Частота среза для CMRR значительно ниже, чем для Кd, из-за того, что в первом случае в качестве сопротивления RC-цепочки выступает коллекторная нагрузка дифференциального каскада, а во втором — большое внутреннее сопротивление источника тока. Наиболее полно реализовать преимуществa которые дает разработчику большой CMRR, можно при использовании дифференциального входа усилителя, но далеко не все УНЧ имеют такую возможность. У многих интегральных усилителей, неинвертирующий вход не имеет своего вывода.


Особ

К-во Просмотров: 239
Бесплатно скачать Учебное пособие: Характеристика усилителя низкой частоты