Учебное пособие: Характеристики компонентов волоконно-оптических систем передачи

Рис. 4. Схемы предварительных усилителей приемного модуля:

а — с интегрирующей -цепочкой; б — трансимпедансного усилителя (— полная входная емкость,— резистор обратной связи, ,— эквивалентное входное сопротивление, — интегрирующая емкость,—операционный усилитель)

Коммутационные элементы (элементы связи). Это набор пассивных оптических элементов, приборов, устройств, обеспечивающих объединение линейного тракта (кабеля) и активных приемно-передающих модулей в единую систему передачи с произвольной структурной конфигурацией и с заданным алгоритмом распределения световых сигналов в этой системе. Коммутационные элементы содержат несколько групп изделий.

Оптические соединители предназначены для многократного сочленения-расчленения концов двух отрезков кабеля (соединители типа кабель — кабель) или конца кабеля с передающим (приемным) модулем (блочные соединители). По числу одновременно соединяемых световодов они делятся на одно- и многоволоконные. В типичном одноволоконном (однополюсном) оптическом соединителе (рис. 9.12,а) конец кабеля армируется жестким калиброванным цилиндрическим элементом так, чтобы оси этого элемента и сердцевины волокна строго совпадали. В этом случае при соединении цилиндрические элементы совмещаются с помощью направляющей муфты, автоматически обеспечивая и совмещение осей волокон. В многоволоконных (многополюсных) соединителях (рис. 9.12,6) чаще всего используют конструкцию с У-образными канавками, в которых и размещаются отдельные световоды. Кроме соединителей линейного типа (рис. 5) известны матричные с числом одновременно сочленяемых световодов .до 100... 150. Заметим, что число разновидностей опторазъемов, отличающихся друг от друга принципом сведения сочленяемых элементов, чрезвычайно велико: число наименований патентной литературы по этому направлению превышает несколько тысяч.

Рис. 5. Оптические коммутационные элементы:

а, б — однополюсный и многополюсный соединители; в — голографический коммутатор; 1 — кожух; 2 — волокно; 3 — армиров-ка; 4 — направляющая муфта; 5 — корпус; 6 — волокна; 7 — цилиндрические выравнивающие элементы; 8 — плоскость излучения волокон); 9 — отклоняющий элемент; 10 — плоскость приема Гволокон)

Рис. 6. Зависимость вносимых потерь сочленения двухслойных волокон от зазора между торцами (а), угла перекоса (б) и несоосности (в)


Чисто внешне оптические соединители обычно оформляются так же, как электрические для унификации в сфере применения.

Основной параметр оптического соединителя вносимые ш> тери пропускания; приемлемый уровень этих потерь 1 дБ. Величинусоставляют неидеальность механизма соединителя (допуски при обработке деталей, истирание и усадка, различие температурных коэффициентов используемых материалов и т. п.); несовершенство используемых волокон (линейные колебания диаметра и числовой апертуры, допуски на диаметры сердцевины и оболочки, эллипсность их сечений, эксцентриситет и т. п.); технологические погрешности при заделке (армировании) конца кабеля, обусловливающие разъюстировку центров сердцевины волокна и направляющего элемента; воздействие внешних факторов (ударов, вибраций, температуры, влажности и т. п.) в процессе эксплуатации. При расчетеиспользуют зависимости (теоретические или эмпирические), подобные тем, которые представлены на рис. 6. Из этих графиков видно, что1 дБ вполне реально, однако требует высокой прецизионности во всех компонентах сочленения.

Оптические разветвители, составляющие другую значительную группу рассматриваемых пассивных элементов, представляют собой устройства, в которых излучение, подаваемое на вход (или входы), распределяется по заданному закону между его выходами; наибольшее распространение получили направленные ответ-вители (разветвители) и типа «звезда» (рис. 6). В направленном ответвителе (рис. 7) выходы 3 и 4 должны быть связаны со входами 1 и 2 определенным образом, а входы / и 2 развязаны между собой. Основными параметрами этих устройств являются: коэффициент связи (от 0 до 100%, при 100% вся мощность входа / поступает только на выход 3); коэффициент направленности, характеризующий развязку входов / и 2, который обычно должен превышать 40... 60 дБ; вносимые потери, приемлемый уровень которых, как и в случае соединителя, близок к 1 дБ. Принцип

Рис. 7. Оптические двухполюсный направленный разветвитель (а) и типа «звезда» (б): 1 — сердцевина; 2 — зеркало; 3 — оболочка

действия ответвителя основан на «просачивании» части световой энергии из сердцевины в оболочку и через нее в другое волокно, контактирующее с первым на некотором протяжении. Практически такие элементы изготавливают путем спекания волокон цилиндрического или фоконного (конического) типа,, при этом для получения требуемых значений коэффициентов связи и направленности варьируют углы конусности, близость расположения волокон, длину области взаимодействия, размеры и состав характерных частей волокон.

Оптический разветвитель типа «звезда» предназначен для распределения входного сигнала между большим числом (до нескольких десятков) однотипных абонентов. Основу конструкции на рис. 9.14,6 составляет оптический смеситель, представляющий собой отрезок двухслойного световода большого диаметра с посеребренным торцом, в котором световой поток благодаря многократному отражению равномерно распределяется во все выходные световоды. Устройство обеспечивает минимальные потери сигнала, равенство этих потерь для любой пары выходов,, слабую зависимость потерь от числа обслуживаемых терминалов, надежность связи.

Оптические коммутаторы представляют собой устройства, функционально реализующие полнодоступную схему с пг входами и п выходами, т. е. сполюсами; в частном случае при устройство называют оптическим переключателем.

К числу основных параметров этих приборов относятся вносимые потери, степень подавления перекрестных помех (ослабление сигнала между незамкнутыми полюсами), а также быстродействие, оцениваемое временем переключения из одного состояния в другое. Кроме того, важны потребляемая устройством мощность* спектральная полоса пропускания, вносимые модовые искажения.

В устройстве оптических коммутаторов используется много различных физических принципов. Исторически первые электромеханические коммутаторы (например, с поворачивающимися зеркалами или призмами) позволяют относительно просто коммутировать большое число каналов (до 8x8 и более), однако быстродействие их очень мало (около с). Кроме того, они громоздки и не выдерживают всего комплекса эксплуатационных воздействий (в частности, ударов и вибраций). Значительно более совершенны коммутаторы, использующие электро-,, магнито-, акус-тооптические эффекты, особенно при изготовлении этих устройств в интегрально-оптическом исполнении. Субнаносекундные скорости переключения, вносимые потери на уровне 3... 6 дБ, подавление перекрестных помех более чем на 50 дБ, микроваттный режим управления — все это представляется достижимым для интегрально-оптических коммутаторов. При этом одной из важнейших и сложных проблем остается оптимальная стыковка этих устройств с цилиндрическими волокнами. Кроме того, интегрально-оптические коммутаторы удобны лишь при сопряжении небольшого (до 10) числа каналов.

Кардинальное решение проблемы коммутации большого числа каналов () связано с созданием голографических дифракционных решеток в оптических реверсивных средах (рис. 9). При изготовлении отклоняющей пластины, например из оксида висмута-кремния (В80), можно записывать и стирать голографические дифракционные решетки в реальном масштабе времени. Изменением пространственной частоты дифракционной решетки можно получать различные отклонения луча света в двух взаимно перпендикулярных направлениях и осуществлять тем самым коммутациюканалов. Дополнительное достоинство В80-кристаллов — наличие внутренней памяти: наведенная решетка сохраняется и после прекращения записывающего воздействия. Кроме рассмотренных трех основных групп пассивных элементов ВОЛС имеется много других. Оптические аттенюаторы, фильтры, линии задержки, смесители мод, оптические мультиплексоры, светоделители оказываются очень полезными, а часто и необходимыми при создании разветвленных волоконно-оптических сетей передачи.

Новыми и достаточно специфическими являются элементы ввода-вывода излучения. Они выполняют функцию оптического согласования угловых апертур активных элементов (в первую очередь излучателя) и волокна. Оптимизация ввода излучения в волокно (рис. 10) может дать выигрыш по мощности до 10 дБ.

Объединение элементов в систему. Волоконно-оптическая связь с момента своего появления основывается на принципах передачи цифровой информации. Это обусловлено тремя основными причинами.


Во-первых, появление ВОЛС совпало со временем,, когда преимущества цифровых методов обработки и передачи информации перед аналоговыми стали очевидными; при этом зарождающееся направление не было связано какими-то старыми традиционными решениями. Во-вторых, широкопол осность ВОЛС сразу удовлетворяла требованиям цифровой связи. В-третьих, оптоэлектронный канал лазер — волокно — фотодиод не обладает необходимой линейностью передаточной характеристики и линеаризация ее очень сложна.

При передаче аналоговой информации (а исходная, первичная информация чаще всего имеет аналоговую форму) она перед поступлением в ВОЛС проходит ряд преобразований: дискретизацию (стробирование), кодирование (аналого-цифровое преобразование) и мультиплексирование (уплотнение отдельных информационных каналов).

Код передачи (или код системы связи) характеризует такие специфические отметки в передаваемой двоичной информации, которые в приемнике позволяют установить их однозначное соответствие цифровому сигналу, возбуждающему передатчик. Известно много вариантов кодирования; при выборе оптимального кода руководствуются такими соображениями, как простота кодирующего устройства, узкая полоса рабочих частот (это упрощает схему приемника и уменьшает эквивалентный входной шум), возможность одновременно с сообщением передавать и синхросигналы, исключение случайных ошибок передачи и т. п.

Широко распространенными являются (рис. 11) код «без возврата к нулю» (БВН или в английском написании) и двухфазный код типа(или «Манчестер-П»). Для подавляющего большинства случаев простейший код БВН удовлетворяет всем требованиям передачи данных.

К-во Просмотров: 226
Бесплатно скачать Учебное пособие: Характеристики компонентов волоконно-оптических систем передачи