Учебное пособие: Методы исследования операций

при условиях

(6)

. (7)

Двойственная задача

(8)

при условиях

(9)

. (10)

Сопоставляя формы записи прямой и двойственной задач, можно установить между ними следующие взаимосвязи:

1) если прямая задача является задачей максимизации, то двойственная будет задачей минимизации, и наоборот;

2) коэффициенты целевой функции прямой задачи c1, c2, …, cn становятся свободными членами ограничений двойственной задачи;

3) свободные члены ограничений прямой задачи b1, b2, …, bm становятся коэффициентами целевой функции двойственной задачи;

4) матрицу ограничений двойственной задачи получают транспонированием матрицы ограничений прямой задачи;

5) если знаки всех неравенств в ограничениях прямой «£», то в двойственной задаче все ограничения будут иметь знак «³»;

6) число ограничений прямой задачи равно числу переменных двойственной задачи, а число ограничений двойственной задачи равно числу переменных прямой задачи.

Переменные y1, y2,…, ym двойственной задачи иногда называют «теневыми ценами».

Двойственную задачу выгоднее решать, чем исходную прямую, если в прямой задаче при малом количестве переменных имеется большое количество ограничений (т > n).

Связь между оптимальными решениями прямой и двойственной за­дач устанавливают посредством следующих теорем теории двойственности.

Теорема. Если x0 и у0 — допустимые решения прямой и двойственной задач, т. е. если Ах0 £ b и АTy0 ³ с, то

cTx0£ bTy0,

т. е. значения целевой функции прямой задачи никогда не превышают значений целевой функции двойственной задачи.

Теорема(основная теорема двойственности). Если x0 и у0 — допустимые решения прямой и двойственной задач и если cTx0=bTy0, то x0 и у0 — оптимальные решения пары двойственных задач.

Теорема. Если в оптимальном решении прямой задачи i-е ограничение выполняется как строгое неравенство, то оптимальное значение соответствующей двойственной переменной равно нулю.

Смысл этой теоремы состоит в следующем. Если некоторый ресурс bi имеется в избытке и i-е ограничение при оптимальном решении выполняется как строгое неравенство, то оно становится несущественным, и оптимальная цена соответствующего ресурса равна 0.

Теорема. Если в оптимальном решении двойственной задачи ограничение j выполняется как строгое неравенство, то оптимальное значение соответствующей переменной прямой задачи должно быть равно нулю.

Экономическая интерпретация этой теоремы: поскольку величины yj представляют собой цены соответствующих ресурсов, то — это затраты на i-й технологический процесс, величина сi — прибыль от реализации на единицу изделия. Поэтому с экономической точки зрения теорема означает следующее: если i-й технологический процесс оказывается строго невыгодным с точки зрения оптимальных цен ресурсов уопт, то в оптимальном решении прямой задачи интенсивность использования данного технологического процесса хi должна быть равна 0.

Таким образом, теорема выражает принцип рентабельности оптимального организованного производства.

Теорема (теорема существования). Прямая и двойственная задачи имеют оптимальные решения тогда и только тогда, когда обе они имеют допустимые решения.

Теорема (теорема двойственности). Допустимый вектор x0 оптимален тогда и только тогда, когда в двойственной задаче имеется такое допустимое решение уо, что

К-во Просмотров: 619
Бесплатно скачать Учебное пособие: Методы исследования операций