Учебное пособие: Нейрохимия

п/п

Тема Кол-во часов Лекц. Лаб. Сам. Общее число часов 36 48 84 1. Особенности строения нервной системы 2 4 2. Липиды центральной и периферической нервной системы 2 4 3. Миелин и его роль в нервной системе 2 4 4. Нуклеиновые кислоты мозга 2 4 5. Углеводы и их обмен в нервной системе 2 4 6. Энергетический метаболизм мозга 2 4 7. Гипоксия и окислительный стресс 2 4 7 8. Нейроспецифичные белки 2 4 7 9. Свободные аминокислоты нервной системы 2 4 7 10. Нейропептиды. Классификация. Понятие о функциональном континууме 2 4 7 11. Обмен нейропептидов. Роль ферментов обмена нейропептидов 2 4 7 12. Синаптическая передача – основные положения 2 4 7 13. Основные нейромедиаторные системы 2 7 14. Пространственно-временная организация памяти. Информационная емкость нейрологической памяти 2 7 15. Биохимические основы нейрологической памяти и обучения. Проблема переноса памяти 2 7 16. Биохимическая картина болезни Альцгеймера, болезни Паркинсона, шизофрении, аллергического энцефаломиелита и рассеянного склероза 2 7 17. Нейрохимические аспекты наркомании и алкоголизма 2 7 18. Страх, фобии, депрессивные и судорожные состояния, эпилепсия 2 7

Содержание дисциплины

1. Липиды

Липиды центральной и периферической нервной системы. Высокое содержание липидов – важная характерная черта мозга. Содержание в ЦНС и ПНС липидов различных классов. Состав липидов различных нервных клеток – нейронов, глиальных клеток (астроциты, олигодендроциты) и миелина. Жирнокислотный состав липидов мозга. Роль ацил-обменного (деацетилирование/реацетилирование) механизма в функциональной активности мембранных липидов, в первую очередь – фосфолипидов. Организация липидов в различных типах мембран мозга. Нейроспецифичные гликолипиды – ганглиозиды, цереброзиды, сульфатиды и их роль. Участие липидов во внутриклеточных сигнальных механизмах.

2. Миелин

Миелин и его роль в нервной системе. Основные стадии формирования и структура миелина. Участие олигодендроцитов и шванновских клеток в образовании миелина в ЦНС и ПНС. Липидный и белковый состав миелина. Особая роль галактолипидов (цереброзидов, сульфатидов) и полифосфоинозитидов в миелине. Жирнокислотный состав миелиновых липидов, роль длинноцепочечных жирных кислот. Белки, входящие в состав миелина (катионный белок миелина, протеолипиды, белок Вольфграма, липофилин и др.) Некоторые заболевания, вызванные нарушением структуры миелина (демиелинизирующие заболевания).

3. Нуклеиновые кислоты и нейроспецифичные белки

Некоторые особенности организации генома в ЦНС. Набор гистонов в хроматине мозга. Высокое отношение РНК/ДНК в мозге, коррелирующее с высокой скоростью трансляции.

Некоторые примеры нейроспецифичных белков и их роль в ЦНС. Са2+ -связывающие белки (S-100, GP-350). Белки синаптических структур: GAP-43 (B-50), BASP1, синаптобревин, синаптотагмин, рабфилин3а, синтаксин, SNAP-25 и др. Белки, контролирующие состояние цитоскелета, такие как гелзолин, профилин, миозин1; белки, участвующие в аксональном транспорте. Примеры нейроспецифичных ферментов (изоэнзимов).

4. Синаптическая передача

Синаптическая передача– основные положения. Биосинтез нейромедиаторов, запасание в везикулах и выброс в синаптическую щель (экзоцитоз). Роль ионов Са2+ в синаптической трансмиссии. Механизмы инактивации высвободившихся нейротрансмиттеров: “обратный захват” в нервные окончания (катехоламины, серотонин); ферментативная деградация (ацетилхолин, моноамины, пептиды); захват и метаболизм в глиальных клетках (глутамат, ГАМК). Основные нейромедиаторные системы.

5. Энергетический метаболизм мозга

Высокий уровень энергетического обмена – специфическая особенность мозга. Глюкоза, как основной энергетический субстрат для мозга. Потребление кислорода и глюкозы разными структурами мозга. Альтернативные энергетические субстраты, которые могут окисляться в мозге при некоторых условиях (кетоновые тела, короткоцепочечные жирные кислоты, аминокислоты, гликоген). Гематоэнцефалический барьер и его роль в транспорте энергетических субстратов в мозг. Важная роль гексокиназы и пируватдегидрогеназного комплекса для энергетического метаболизма мозга. Скорость-лимитирующие этапы гликолиза и цикла трикарбоновых кислот и участие в их контроле отношения АТФ/АДФ. Компартментализация энергетического метаболизма в мозге, нейрональный и глиальный компартменты. Высокая степень зависимости процессов синтеза нейротрансмиттеров от энергетического метаболизма. Методы расчета энергетического потока (energyflux) в мозге.

6. Основные типы рецепторов нейромедиаторов

Общие принципы структуры и функций. Ионотропные рецепторы – образуют ионные каналы, состоящие из нескольких субъединиц (нАх-, NMDA-глутаматные, ГАМКА -, глициновый и др.рецепторы). Рецепторы данной группы локализованы на поверхности клетки; ответ на связывание агониста чрезвычайно быстрый и, как правило, не требует образования вторичных мессенджеров.

Метаботропные, медленно действующие рецепторы – крупные белковые цепи, имеющие 7 трансмембранных доменов и чаще всего сопряженные с G-белками. Различные внутриклеточные механизмы передачи сигнала. Модуляция аденилатциклазной активности с последующей регуляцией образовавшимся цАМФ активности протеинкиназы А (a2 -, b-адренорецепторы и др.). Активация фосфолипазы С с последующим изменением гомеостаза ионов Са2+ и регуляцией активности протеинкиназы С или активацией фосфолипаз А2 и D. Другие механизмы внутриклеточного сигналинга. Взаимосвязь разных путей внутриклеточной передачи сигнала.

7. Биохимические аспекты обучения и памяти

Обучение как адаптивные изменения в ответ на воздействия окружающей среды. Нейрохимические корреляты обучения и памяти как компромисс между поведенческими критериями и достижениями в области молекулярной и клеточной биологии. Формирование кратковременной памяти, роль посттрансляционных модификаций структурных элементов синапса. Долговременная память и сопряженные с ней биохимические реакции (синтез белков denovo, передача информации от клеточной мембраны к ядру с помощью аксонального транспорта и др.). Синаптическая пластичность как модельная система при изучении обучения и памяти. Роль ростовых факторов, эндогенных гормонов; важное значение физической активности и стимуляции процессов мышления для мозговых функций и пластичности мозга.

8. Биохимическая картина некоторых нейропатологий

Биохимические аспекты нейродегенеративных (болезнь Альцгеймера, прионные болезни) и аутоиммунных (рассеянный склероз, миастения гравис) болезней. Нейрохимия шизофрении, тревожных и депрессивных состояний, эпилепсии, болезни Паркинсона. Нейрохимические аспекты алкоголизма. Нейрохимические основы наркотической и лекарственной зависимости, молекулярные мишени наркотических веществ. Возможные молекулярные механизмы привыкания; роль системы цАМФ.


Список основной литературы

1. Нейрохимия / Под ред. Ашмарина И.П., Стукалова П.В. – М.: Изд-во Института биомед. химии РАМН, 1996. – 470 с.

2. Успехи функциональной Нейрохимии / Под ред. Дамбиновой С.А., Арутюняна А.В., С-Пб.: Изд-во С.-П. университета, 2003, 516 с.

3. Нейрохимия / Под ред. Прохоровой М.И., Ещенко Н.Д., Л.: Изд-во Лен. ун-та., 1979, 472 с.

4. Соловьев В.Б. Нейрохимия: курс лекций. – Пенза: ПГПУ, 2007, - 150 с.

Список дополнительной литературы

1. Ашмарин И.П., Каменская М.А. Нейропептиды в симпатической передаче // Итоги Н. и Т. (ВИНИТИ. Сер. Физиология человека и животных). – 1988. – 34. – 184 с.

2. Буров Ю.В., Ведерникова К.М. Нейрохимия и фармакология алкоголизма. – М.: Медицина, 1985. – 240 с.

3. Физиология человека / Под ред. Косицкого Г.И. – М.: Медицина, 1985. – 544 с.

4. Эйнштейн Э. Белки мозга и спинномозговой жидкости в норме и патологии – М.: «Мир», 1988, 280 с.

5. Ильюченок Р.Ю. Фармокология поведения и памяти – Н-ск.: «Наука», 1972

6. Кометиани П.А. Нейрохимические аспекты памяти – Тбилиси: «Мецниереба», 1980, 200 с.


Требования к уровню освоения программы

К-во Просмотров: 424
Бесплатно скачать Учебное пособие: Нейрохимия