Учебное пособие: Нервова тканина

4. Нервові волокна

Нервові волокна — це провідники нервових імпульсів. Складаються вони із відростка нейрону — осьового циліндра і оболонки, що його вкриває (нейролемоцит, швановська клітина) — структура олігодендроглії. Залежно від будови оболонки їх поділяють на дві основні групи — мієлінові та безмієлінові.

Безмієлінові нервові волокна є типовими для вегетативного відділу нервової системи, порівняно просто побудовані і спрямовуються, переважно, до внутрішніх органів. Нейролемоцити щільно прилягають один до одного, утворюючи безперервний тяж на поверхні нервового волокна. Складаються безмієлінові волокна з осьового циліндра, нейролеми і базальної мембрани. Прогинаючи оболонку нейролемоцитів, осьовий циліндр глибоко занурюється у цей тяж клітин, які, ніби муфта, огортають нервовий відросток. Входячи до лемоцита, осьові циліндри втягують за собою мембрану нейролемоцита і стають немов би підвішеними на подвійній складці мембрани, яку називають мезаксоном. В безмієліновому нервовому волокні міститься від 7 до 10 осьових циліндрів, які можуть переходити із одного безмієлінового волокна у сусіднє. У світловому мікроскопі ні мезаксона, ні межі між нейролемоцитами не видно, безмієлінове волокно здається суцільним пучком осьових циліндрів, обгороджених масою цитоплазми, яка містить ядра. Швидкість передачі нервового імпульсу у безмієлінових волокнах менша, ніж у мієлінових. Це пояснюється тим, що у безмієлінових волокнах хвиля деполяризації рухається по всій плазмолемі, не перериваючись. Відомо, що у внутрішніх органах рух, секреція та інші функції здійснюються повільніше, а тому осьові циліндри безмієлінових волокон не ізольовані так чітко один від одного, як це має місце у мієлінових.

Мієлінові нервові волокна локалізуються як у центральній, так і у периферійній нервовій системі, тобто у складі головного та спинного мозку, а також периферійних нервах. Це товсті волокна діаметром від 3 до 25 мкм, що складаються із осьового циліндра, мієлінової оболонки, нейролеми та базальної мембрани. Осьовий циліндр — це відросток нейрона, яким частіше буває аксон, але може бути і дендрит. Він складається з нейроплазми, яка містить поздовжньо орієнтовані нейрофіламенти і нейротрубки, а також мітохондрії. Осьовий циліндр вкритий аксолемою (продовження плазмолеми нейрона), яка забезпечує проведення нервового імпульсу. В кожному мієліновому волокні лише один осьовий циліндр, навколо якого почергово, ланцюжком розміщуються нейролемоцити.

У процесі розвитку мієлінового волокна осьовий циліндр занурюється в нейролемоцит, втягуючи його плазмолему і утворюючи глибоку складку. Цю подвійну складку (дуплікатуру) нейролемоцита називають мезаксоном. У процесі подальшого ґенезу волокна, нейролемоцит (швановська клітина) повільно обертається навколо осьового циліндра, в результаті чого мезаксон багато разів огортає його.

Цитоплазма нейролемоцита і його ядра залишаються на периферії, утворюючи нейролему волокна. Таким чином, мієлінова оболонка утворюється із щільно й концентрично нашарованих навколо осьового циліндра завитків мезаксона, які є пластинками мієлінового шару (рис. 1).

Рис.1. Схема будови мієлінового волокна:

1 — аксон; 2 — мезаксон; 3 — насічки; 4 — перехват; 5 — цитоплазма нейролемоцита; 6 — ядро нейролемоцита; 7 — невролема; 8 - ендоневрій

Кожний завиток мезаксона відповідає ліпідним шарам двох листків плазмолеми нейролемоцита. На його середині та поверхні на ультраструктурному рівні можна виявити темні лінії, утворені білковими молекулами. Насічки мієліну (Шмідта-Лантермана) відповідають тим місцям, де завитки мезаксону розсунуті цитоплазмою шванівської клітини. Насічки можуть мати напрямок як до центру, так і на периферію, у місцях насічок мієлін не переривається. Мієлінова оболонка волокна складається з багатьох нейролемоцитів, які, в місцях контакту між собою, утворюють перемички вузла (перехват Ранв'є). Переривність мієлінової оболонки має велике значення для транспортування до осьового циліндра необхідних речовин, сприяє обміну іонами та впливає на швидкість проведення нервового імпульсу.

Ділянка нервового волокна між двома вузловими перехватами називається міжвузловим сегментом, який відповідає одній гліальній клітині. На повздовжньому розрізі мієлінового волокна поблизу вузлового перехвату є ділянка, у якій завитки мезаксона послідовно контактують з осьовим циліндром. Місця прикріплення найглибших завитків найбільш віддалені від перетяжок, а всі наступні — поступово наближаються до них. Це пояснюється тим, що мезаксон нашаровується у процесі росту і осьового циліндра і нейролемоцитів. Таким чином, перші шари мезаксона коротші за останні. Краї двох сусідних лемоцитів, що контактують у ділянці перехвату Ранв'є, утворюють інтердигітації, які перекривають ділянку перемички і називаються «рихлим комірцем».

Мієлінові волокна центральної нервової системи у своїй будові мають ряд особливостей. їх оболонку утворюють типові олігодендроцити, у них відсутні інтердигітації, насічки Шмідта-Лантермана, відсутня сполучнотканинна базальна мембрана, роль якої виконує нейроглія.

Таким чином, у мієліновому волокні лише один осьовий циліндр, мезаксон, закручений щільними шарами, і утворює товстий шар мієліну. Порівняно великий діаметр осьового циліндра, наявність перехватів та добре розвинений мієліновий шар забезпечують швидке та точне проведення нервового імпульсу.

5. Синапси

Однобічна передача нервового імпульсу в межах рефлекторної дуги зумовлена спеціалізованим контактом двох нейронів, що називають міжнейронним синапсом. Морфологічно у складі синапсу розрізняють пресинаптичний і постсинаптичний полюси, між якими є синаптична щілина. Зустрічаються синапси із хімічною та електричною передачами. Функціонально розрізняють два види синапсів — збудливі та гальмівні. Морфологічна класифікація їх залежить від того, які частини нейронів контактують між собою. Аксодендричні — аксон першого нейрона передає нервовий імпульс на дендрит другого. Аксосоматичні — аксон першого нейрона передає імпульс на перикаріон другого. Аксоаксонні — терміналі аксона першого нейрона закінчуються на аксоні другого. Очевидно, аксоаксонні синапси виконують гальмівну функцію. Крім останніх, найбільш поширених міжнейронних контактів, між деякими нейронами зустрічаються дендросоматичні та дендродендричні синапси. Таким чином, будь яка частина нейрона може утворювати міжнейронний синапс з будь-якою частиною іншого нейрона.

Морфологічно пресинаптичний полюс синапса утворений термінальною гілочкою аксона тієї нервової клітини, яка передає імпульс. Цей полюс, здебільшого, розширений у вигляді ґудзика, вкритий пресинаптичною мембраною. У ньому містяться мітохондрії та синаптичні пухирці, вкриті мембраною і з вмістом певних хімічних речовин, так звані медіатори. Останні сприяють передачі нервового імпульсу на постсинаптичну частину міжнеиронного контакту. Синаптичні пухирці бувають різних розмірів (маленькі прозорі, великі електронно-щільні, прозорі, що містять щільну гранулу). Вони містять хімічні речовини, що називаються медіаторами. Участь в передачі нервового імпульсу іншому нейрону відбувається за рахунок транспортування шляхом екзоцитозу в синаптичну щілину медіатора. Медіаторами можуть бути ацетілхолін (холінергічні синапси), норадреналін та адреналін (адренергічні синапси), а також інші речовини — серотонін, глутамінова кислота, нейротензин, ангіотензин, речовина Р, енкефалін (у збудливих синапсах) дофамін, гліцин, гамма-аміномасляна кислота (є медіаторами гальмівних синапсів).

Пресинаптична мембрана містить електронно-щільні частинки, які разом із нейрофіламентами утворюють пресинаптичну решітку для пухирців. У холінергічних синапсах ці пухирці дрібні і прозорі, а також зустрічаються великі та електронно-щільні, синаптичні пухирці адренергічних синапсів великі, прозорі і морфологічно характеризуються наявністю електронно-щільної гранули.

Постсинаптична мембрана холінергічних синапсів містить «холінрецептор-ний» білок — рецептор медіатора, чим зумовлена дія останнього на постсинап-тичну мембрану. При взаємодії рецептора медіатора з ацетилхоліном утворюють конформаційні зміни його молекул, які призводять до зміни проникності мембрани та генерації нервового імпульсу в нейроні. Медіатори гальмівних синапсів (дофамін, гліцин) не збільшують проникність мембрани для іонів, а зменшують її, стабілізуючи мембранний потенціал, а, отже, гальмують генерацію нервового імпульсу.

Синаптична щілина заповнена тканинною рідиною, в якій містяться електронно-щільні частинки та ниткоподібні структури, що розміщуються на поверхнях обох синаптичних мембран. Очевидно, ці структури містять одночасно пре- і постсинаптичні мембрани. При проходженні нервового імпульсу до закінчення пресинаптичного нейрона синаптичні пухирці зливаються із пресинаптичною мембраною, їхній вміст виливається в щілину, і медіатор діє на постсинаптичний нейрон. Мембрана пухирців використовується повторно.

Електротонічні синапси утворюються при щільному приляганні нейролем двох нейронів, переважно, їх дендритів і перикаріона. Це, так звані, закриті, електричні синапси (безпухирцеві). Останні не мають синаптичної щілини.

6. Нервові закінчення

Термінальні апарати нервових волокон — нервові закінчення за їх функціональним значенням поділяють на три види: рецептори, ефектори та міжнейронні синапси.

Рецептори (чутливі нервові закінчення) — спеціалізовані термінальні структури дендритів нейронів, пристосовані до сприйняття подразнень, що надходять до організму. Залежно від локалізації і специфічності нервової регуляції життєдіяльності організму рецептори поділяють на екстерорецептори (сприйняття подразнень із зовнішнього середовища) та інтерорецептори (подразнення власних тканин організму). Різновидом інтерорецепторів є пропріорецептори — нервові закінчення у м'язах та сухожиллях, які беруть участь у регуляції рухів і положенні тіла у просторі. Залежно від природи подразнень, останні поділяють на термо-, механо-, баро-, хемо-, ноціорецептори та інш.

Чутливі нервові закінчення надзвичайно різноманітні за структурною організацією. Вони поділяються на вільні нервові закінчення, які складаються лише із термінальних розгалужень осьового циліндра дендрита чутливого нейрона та невільні — крім осьового циліндра, містять також клітини нейроглії. Якщо невільні рецептори оточені сполучнотканинною капсулою, їх називають капсульованими; ті невільні рецептори, що не мають сполучнотканинної капсули, мають назву некапсульовані. Рецепторні закінчення або рецепторно-нейтральні синапси складаються із спеціалізованих клітин, здатних реагувати на подразник і викликати деполяризацію плазмолеми зв'язаного з ним дендрита аферентного нейрона.

Прикладом вільного рецептора можуть бути деревоподібні та кущеподібні нервові закінчення епітеліальної тканини. При формуванні таких закінчень, мієлінові нервові волокна, підходячи до епітеліального пласта, втрачають мієлінову оболонку, а їхні осьові циліндри утворюють кінцеві розгалуження, що розміщуються між окремими епітеліоцитами. За функцією це, як правило, термо- та ноцірецептори. Вільні нервові закінчення можуть обплітати у вигляді кошика волосяні фолікули, реєструючи зміщення у просторі окремих волосин, відіграючи роль механорецепторів.

До складу рецепторного апарату багатошарових епітелієв належать поодинокі чутливі епітеліальні клітини, так звані дотикові епітеліоцити Меркеля. Ці електронно-прозорі клітини мають сплющені ядра та осьміофільні гранули. До їх базальної частини прилягають чутливі нервові закінчення у вигляді дисків (дотикові меніски Меркеля). Нейроепітеліальні клітини Меркеля мають постійне місце в епітеліальному шарі, незважаючи на постійний рух епітеліоцитів від базального до дистального полюса, утворюючи шари епітелію. Клітини Меркеля — типовий приклад нейроепітелію, епітеліоцити якого пристосувалися до рецепції, вони виконують функцію механорецепції.

Надзвичайно різноманітні рецепторні апарати сполучної тканини представлені двома групами невільних нервових закінчень. У капсульованих рецепторах нервові терміналі аферентних волокон, як правило, оточені нейролемоцитами і допоміжними елементами сполучнотканинного походження. Серед капсульованих чутливих закінчень, залежно від будови, розрізняють тільця Фатер-Пачіні, Гольджі-Маццоні, Мейснера, кінцеві колби Краузе (генітальні тільця). Найбільш поширені рецептори сполучної тканини — це пластинчасті тільця Фатер-Пачіні. У їх складі розрізняють внутрішню колбу та зовнішню капсулу. Навколо розгалужень осьового циліндра (термінальний відділ чутливого нервового волокна), яке втратило мієлінову оболонку, скупчуються видозмінені нейролемоцити, що і утворюють внутршіню колбу. Капсула тілець Фатер-Пачіні складається із великої кількості сполучнотканинних пластинок, утворених фібробластами та спірально орієнтованими пучками колагенових волокон. На межі внутрішньої колби та зовнішньої капсули розмішуються клітини, які, очевидно, визначаються як гліальні. Ці гліоцити утворюють синапси із розгалуженням осьового циліндра. Є припущення, що нервовий імпульс генерується в умовах зміщення зовнішньої капсули щодо внутрішньої колби.

Тільця Гольджі-Маццоні менші від тілець Фатер-Пачіні, мають тонку капсулу і, порівняно, велику внутрішню колбу. Ці структури виконують функцію барорецепції у шкірі, серозних та слизових оболонках.

Тільця Мейснера (дотикові) — це рецептори тактильної чутливості, які локалізуються у сосочковому шарі дерми. Ці структури орієнтовані перпендикулярно до поверхні шкіри і мієлінові волокна, втрачаючи мієлінову оболонку, контактують із поверхнею гліальних клітин колби. Колагенові волокна сполучнотканинної капсули можуть заповнювати простори між нейролемоцитами і терміналями чутливого нервового волокна.

К-во Просмотров: 219
Бесплатно скачать Учебное пособие: Нервова тканина