Учебное пособие: Обнаружение единичных нуклеотидных замен в ДНК: расщепление РНКазой и денатурирующий градиентный гель-электрофорез


1.3. Полимеразная цепная реакция

РНКазное расщепление и ДГГЭ можно использовать для непосредственного исследования фрагментов геномной ДНК, минуя стадию клонирования. Работая с равномерно меченными зондами, обладающими высокой удельной активностью, можно любым из этих методов получить желаемый результат, имея изначально 5–10 мкг геномной ДНК человека и проводя радиоавтографию 24 ч. Чем проще организм, тем выше чувствительность методов. Хотя получаемые результаты в большинстве своем можно оценить высоко, непосредственное использование суммарной геномной ДНК ставит перед исследователем ряд проблем. Это, во-первых, нередко низкое отношение сигнала к фону, особенно при РНКазном расщеплении. Во-вторых, активность равномерно меченных фосфором зондов должна быть настолько высокой, чтобы использовать их в течение дня или двух. В-третьих, при проведении некоторых анализов, особенно в случае множественных тестов, лимитирующим фактором может стать количество геномной ДНК. Любой тест тем предпочтительнее, чем меньшее количество ДНК требует.

В 1985 г. был описан принципиально новый метод, позволяющий в миллион раз амплифицировать интересующие последовательности в препарате геномной ДНК, – полимеразная цепная реакция, ПЦР. Идея метода и ее воплощение очень просты. Сначала синтезируются два дезоксиолигонуклеотида длиной 20–30 оснований, представляющие собой концевые последовательности интересующего фрагмента ДНК. Полярность выбрана так, чтобы после отжига их направления 5'-3' были обращены друг к другу. Избыточные количества этих олигонуклеотидов смешивают с геномной ДНК, и смесь нагревают для денатурации последней. Снижение температуры приводит к реассоциации олигонуклеотидов с гомологичными участками геномной ДНК. Затем проводят наращивание цепи при участии ДНК-полимер азы и дезоксирибонуклеотидтрифосфатов. Такая последовательность реакций денатурации, реассоциации и наращивания цепи повторяется 20–30 раз. Уже после двух циклов среди продуктов реакции появляются фрагменты ДНК, точно совпадающие по длине с исходным фрагментом, ограниченным олигонуклеотидами. Эти фрагменты служат матрицей для последующих реакций и идентичны большинству конечных продуктов. Процесс является по существу цепным, так как продукты данной реакции служат матрицей для последующих реакций. Количество вновь образующейся ДНК возрастает в геометрической прогрессии, поэтому за 20 циклов при 100% – ной эффективности каждого из них можно получить 220 молекул. На практике эффективность каждого цикла амплификации составляет 20–50%, т.е. при проведении достаточного числа циклов можно добиться увеличения количества специфической последовательности кратного миллиону.

Если при амплификации геномной ДНК позвоночных в качестве праймеров для ПЦР используют олигонуклеотиды длиной 20 нуклеотидов и более, то процесс этот довольно специфичен и амплифицируется только один фрагмент ДНК – Однако иногда среди продуктов реакции наблюдается накопление фрагментов, происхождение которых трудно объяснить. А поскольку эти фрагменты могут мешать последующему анализу, то рекомендуется провести еще одну серию амплификации, с использованием другого набора олигонуклеотидных праймеров. Этот метод, именуемый «nestedoligo», состоит в следующем: продукт первичной полимеразной цепной реакции используется в качестве матрицы в последующих раундах ПЦР, но уже с двумя другими олигонуклеотидами, имеющими гомологии с участками ДНК внутри первичного амплифицированного фрагмента. Такая процедура позволяет получить большое количество индивидуальной последовательности ДНК, несколько более короткой, чем исходный фрагмент, и использовать ее для последующего анализа.

Имея исходно менее 1 мкг суммарной геномной ДНК позвоночных, в ПЦР можно получить несколько микрограмм специфического фрагмента. Хорошо амплифицируются фрагменты до 2000 п. н. В одной реакции можно амплифицировать одновременно и несколько фрагментов. Амплификация специфических фрагментов с помощью ПЦР может применяться и в диагностике, и при клонировании. Левинсон и Гитшейер использовали амплифицированную в ПЦР геномную РНК и РНКазное расщепление для выявления однонуклеотидных замен в гене фактора VIII, обусловливающих Х-сцепленную гемофилию А человека. Мы объясняем, как применять ПЦР в сочетании с РНКазным расщеплением и с ДГГЭ для обнаружения однонуклеотидных замен в препаратах геномной ДНК.


3. Предварительные процедуры

Для проведения ПЦР, РНКазного расщепления и ДГГЭ необходимы следующие предварительные процедуры.

1. Фрагмент ДНК, тестируемый на мутации или полиморфизм, необходимо клонировать в плазмидном векторе, позволяющем синтезировать определенные типы зондов.

2. Очень полезно, а иногда и просто необходимо иметь ре-стрикционную карту такой клонированной вставки ДНК – Расположение сайтов рестрикции, особенно тех, что встречаются лишь 1–2 раза во всей плазмиде, можно определить при помощи стандартных методик рестрикционного картирования. Для обоих типов одноцепочечных зондов необходимо иметь единичный сайт рестрикции в участке тестируемой ДНК, дистальном по отношению к сайту связывания с РНК-полимеразой в случае РНК-зондов или с олигонуклеотидами в случае ДНК-зондов. После реассоциации одноцепочечного меченого ДНК-зонда с тестируемой ДНК может возникнуть необходимость расщепить гибридную последовательность ДНК на 2–3 фрагмента с оптимальной для ДГГЭ длиной. В этом случае надо использовать сайты рестрикции, имеющиеся в тестируемом фрагменте.

3. При использовании ПЦР необходимо определить концевые нуклеотидные последовательности тестируемой вставки ДНК. Обычно требуется секвенировать 40–50 п. н., чтобы получить первый набор олигонуклеотидов длиной 20–25 п. н. При работе методом «nestedoligo» необходимо дополнительно просеквенировать любую последовательность внутри фрагмента ДНК, ограниченного первой парой олигонуклеотидов.

4 . Метод РНКазного расщепления

Основное внимание уделено экспериментальным особенностям каждой стадии процесса РНКазного расщепления, включая получение меченого РНК-зонда. Большинство этапов аналогично описываемым в оригинальных работах, но приведены и некоторые модификации. Обсуждаются также возможные методические трудности и способы их преодоления.

Отметим, что для данного метода необязательно, чтобы концевые участки РНК-зонда и тестируемого образца ДНК были строго комплементарны. Выступающие некомплементарные 5'или З'-концы зонда не мешают анализу, так как они просто разрушаются РНКазой в процессе реакции расщепления. В принципе даже полезно иметь выступающие концы, удлиняющие зонд на 5–10% по сравнению с фрагментом ДНК – Это позволяет различать зонд и гибридный фрагмент дикого типа, получающийся при РНКазном расщеплении. Кроме того, выступающие концы дают возможность проверить активность РНКазы: если фермент инактивирован или активность его недостаточна, то не происходит их эффективного удаления и они обнаруживаются при радиоавтографии.

4.1 Материалы

4.1.1 Реактивы для получения РНК-зондов

Для получения равномерно меченных РНК-зондов необходимы те же реактивы, что и для реакций РНКазного расщепления. Здесь мы приводим условия использования РНК-полиме-раз и промоторов из бактериофагов SP6, Т7 и ТЗ. Более подробную информацию по синтезу РНК-зондов можно получить из оригинальных публикаций, посвященных системе SP6.

Чтобы предупредить нежелательные последствия активности чужеродных рибонуклеаз, следует соблюдать определенные меры предосторожности при приготовлении растворов, при работе с пробирками, автоматическими пипетками и т.д. Растворы, выдерживающие нагревание, необходимо автоклавировать и хранить в стерильном виде. Бычий сывороточный альбумин, дитиотрейтол и другие растворы, не выдерживающие автоклавирования, следует готовить на стерильной воде и хранить в стерильных пробирках или бутылях. При работе с РНК желательно также стерилизовать пластиковую посуду и регулярно чистить стержни автоматических пипеток. 1. Матричная ДНК. Фрагмент ДНК-мишени нужно клонировать в плазмидном или фаговом векторе в участке, примыкающем к высокоспецифическим последовательностям промотора бактериофага. В качестве векторных систем обычно используются фаги SP6, Т7 и ТЗ. Имеются также векторы с одним либо двумя промоторами, обращенными к полилин-керным клонирующим сайтам, например pSP70-cepии, pGEM-серии, pBluescribe-серии. В идеальном случае последовательность-мишень встраивается в полилинкер между промоторами так, чтобы обратные РНК-транскрипты можно было получать с обеих ее цепей. После клонирования последовательности-мишени в векторной плазмиде с двумя промоторами обработайте 10–20 мкг плазмидной ДНК рестриктазой, разрезающей по одному из концов мишени или внутри полилинкерной последовательности. В результате вы получите матрицу для обратной транскрипции. Если в качестве зонда предстоит использовать обе цепи матричной ДНК, обработайте такое же количество ДНК еще одной рестриктазой, разрезающей по противоположному концу последовательности-мишени. Экстрагируйте обработанную рестриктазами ДНК фенолом, осадите этанолом и перерастворите в ТЕ в концентрации 1000 мкг/мл.

2. РНК-полимеразы. Очищенные РНК-полимеразы из SP6, Т7 и ТЗ выпускаются многими фирмами. Поступающие в продажу препараты обычно имеют концентрацию 5–20 ед./мл.

3. Меченые нуклеотиды. Приобретите один из четырех нуклеозидтрифосфатов, меченный фосфором в альфа-положении с удельной активностью 400 Ки/ммоль. Мы рекомендуем меченый GTP и приводим методику получения зонда на основе именно этого нуклеотида. Можно одновременно использовать и еще один меченый NTP, изменив соответственно количество взятых в реакцию немеченых нуклеозидтрифосфатов.

4. Немеченый GTP. 2 мм раствор «холодного» GTPхранить при – 70°С.

5. Смесь 3-NTP. Для приготовления «3-NTP» используют 50 или 100 мм исходные растворы остальных трех нуклеотидов в ТЕ-буфере. Концентрация каждого NTP в смеси 10 мм. Хранить при – 70°С.

6. Для транскрипции. Для приготовления 1 мл буфера необходимо:

400 мм трис-HCl, рН 7,5 400 мкл 1 М раствора 60 мм MgCl2 60 мкл 1 М раствора

20 мм спермидина 200 мкл 100 мм раствора 340 мкл Н2 0

7. Исходный раствор DTT. Приготовьте 1,0 М исходный раствор DTTв воде и храните его при 20о С.

8. Исходный раствор БСА. Приготовьте водный раствор без РНКазного БСА в концентрации 1 мг/мл и храните при –20°С.

К-во Просмотров: 179
Бесплатно скачать Учебное пособие: Обнаружение единичных нуклеотидных замен в ДНК: расщепление РНКазой и денатурирующий градиентный гель-электрофорез