Учебное пособие: Органическая химия

Органические соединения обладают самыми разнообразными свойствами. Как непохожи природный газ, сахар и, например, полиэтилен! Тем не менее, органические соединения имеют свои специфические особенности. Первая особенность связана с молекулярным строением этих веществ. По сравнению с ионными соединениями они имеют меньшие температуры плавления и кипения, их реакции часто протекают медленнее, чем у ионных соединений, и требуют применения катализатора. И второе, общее для большинства этих соединений свойство - способность к окислению, причем процесс окисления термодинамически выгоден. Большинство органических соединений окисляются в кислородсодержащей атмосфере с выделением большого количества энергии. Благодаря этим реакциям мы получаем энергию не только для обогрева наших домов и движения транспорта (дрова, уголь, нефть), но и для жизнедеятельности нашего организма (рис. 4).

Рис. 4


2.3 Валентность атома углерода в органических соединениях

Атомы углерода, входящие в состав органических соединений, всегда будут четырёхвалентны, имеют электронную конфигурацию 1s2s22p2 и могут находиться в трех валентных состояниях

Первое валентное состояние (на примере метана СН4). При образовании молекулы метана атом углерода переходит в возбужденное состояние:

Четыре неспаренных электрона (2s и 2р) участвуют в образовании четырех б - связей. При этом возникают гибридные орбитали. Гибридизация орбиталей - процесс выравнивания их по форме и энергии. Число гибридных орбиталей равно числу исходных орбиталей. В молекуле метана и во всех молекулах органических веществ по месту одинарной связи атомы углерода будут находиться в состоянии бр3 - гибридизации, т.е. у атома углерода гибридизации подверглись орбитали одного s - и трех р - электронов и образовались 4 одинаковые гибридные орбитали.

sp3 – гибридные облака располагаются под углом 109°28`.

Второе валентное состояние атома углерода на примере этилена (C2H4)

В молекуле этилена каждый атом углерода соеденён с тремя другими атомами, поэтому в гибридизацию вступают З орбитали: одна s и две р, т.е. происходит sр2 - гибридизация.

Эти орбитали располагаются под углом 120° по отношению друг к другу.

Две негибридные орбитали перекрываются перпендикулярно плоскости и образуют – связь.

Третье валентное состояние атома углерода (на примере ацетилена С2Н2). В молекуле ацетилена атом углерода соединен с двумя другими атомами, поэтому в гибридизацию вступают две орбитали: одна s и одна p, т.е. происходит sp-гибридизация.

Эти орбитали располагаются под углом 180º по отношению друг к другу.


Не вступившие в гибридизацию две p-отбитали при боковом перекрывании образуют две π-связи, расположенные во взаимно перпендикулярных плоскостях.


3. Углеводороды

УГЛЕВОДОРОДЫ, органические соединения, молекулы которых состоят только из атомов углерода и водорода.

Простейший представитель - метан СН4 . Углеводороды являются родоначальниками всех других органических соединений, огромное разнообразие которых может быть получено введением функциональных групп в молекулу углеводорода; поэтому органическую химию часто определяют как химию углеводородов и их производных.

Углеводороды в зависимости от молекулярной массы могут быть газообразными, жидкими или твёрдыми (но пластичными) веществами. Соединения, содержащие в молекуле до четырёх атомов углерода, в обычных условиях - газы, например метан, этан, пропан, бутан, изобутан; эти углеводороды входят в состав горючего природного и попутного нефтяного газов. Жидкие углеводороды входят в состав нефти и нефтепродуктов; они, как правило, содержат до шестнадцати атомов углерода. В состав некоторых восков, парафина, асфальтов, битума, гудрона входят ещё более тяжёлые углеводороды; так, в состав парафина входят твёрдые углеводороды, содержащие от 16 до 30 атомов углерода.

Углеводороды делятся на соединения с открытой цепью - алифатические, или нециклические, соединения с замкнутой циклической структурой - алициклические (не обладают свойством ароматичности) и ароматические (в их молекулах имеется бензольное кольцо или фрагменты, построенные из конденсированных бензольных колец). Ароматические углеводороды выделяют в отдельный класс, поскольку из-за наличия замкнутой сопряжённой системы гс-свя-зей они обладают специфическими свойствами.

Нециклические углеводороды могут иметь не-разветвленную цепь углеродных атомов (молекулы нормального строения) и разветвлённую (молекулы изостроения), В зависимости от типа связей между атомами углерода как алифатические, так и циклические углеводороды делятся на насыщенные, содержащие только простые связи (алканы, циклоалканы), и ненасыщенные, содержащие наряду с простыми кратные связи (алкены, циклоалкены, диены, алкины, цикло-алкины).

Классификация углеводородов отражена на схеме (см. стр. 590), где даны также примеры структур представителей каждого класса углеводородов.

Углеводороды незаменимы в качестве источника энергии, поскольку основное общее свойство всех этих соединений - выделение значительного количества теплоты при горении (например, теплота сгорания метана составляет 890 кДж/моль). Смеси углеводородов используют как топливо на тепловых станциях и в котельных (природный газ, мазут, котельное топливо), как топливо для двигателей автомобилей, самолётов и других транспортных средств (бензин, керосин и дизельное топливо). При полном сгорании углеводородов образуются вода и углекислый газ.

К-во Просмотров: 624
Бесплатно скачать Учебное пособие: Органическая химия