Учебное пособие: Основы системного анализа

Попытаемся показать, что системность является всеобщим свойством материи и человеческой практики. Начнем с рассмотрения человеческой практической деятельности, т.е. ее активного и целенаправленного воздействия на природу. Для этого сформулируем только самые очевидные и обязательные признаки системности: ее целостность и структурированность, взаимосвязанность составляющих ее элементов и подчиненность организации всей системы определенной цели.

Другое название для такого построения деятельности – алгоритмичность. Понятие алгоритма возникло вначале в математике и означало задание точно определенной последовательности однозначно понимаемых операций над числами или другими математическими объектами.

Сегодня становится очевидным, что роль системных представлений в практике постоянно увеличивается, что растет сама системность человеческой практики.

Последний тезис можно проиллюстрировать многими примерами, поучительно сделать это на несколько схематизированном примере проблемы повышения производительности труда.

Одна из важнейших особенность общественного производств а состоит в непрерывном росте его эффективности, и прежде всего в повышении производительности труда. Обеспечение роста производительности труда – это очень сложный и многогранный процесс, но его итог выражается, овеществляется в развитии средств труда и методов его организации.

Академиком В. М. Глушковым показано, что сложность R объективно необходимых задач управления растет быстрее, чем квадрат m людей, занятых управленческой деятельностью: R > b m², где b = Const. Известно, что для успешного управления отраслью, где занято n человек и имеется m управляемых объектов, суммарная сложность задач управления определяется соотношением R = c (n + m)² (как правило, c = 1). Объективная тенденция увеличения сложности управления, имеющая место в современном мире, имеет место и в России (где n = 2731, m = 107). Это приводит к росту необходимых затрат живого труда, т.е. ресурсов R на управление, а возможности человеческого мозга по запоминанию и переработке информации ограничены. В среднем объем памяти человека S = 10 16 бит, а средняя производительность вычислений V = 1/3 106 опер/с.

Следовательно, при решении сложных информационных задач только административными органами муниципального и федерального уровня получим R = 1 (2731 + 10000000)² = 10002731² = 100054627458000 опер./год, а для удовлетворительного управления страной при ручной технологии требуется, как минимум, N = R/V = 3x100054627458000/1000000 = 3001636882 чел., т.е. 300 миллионов. Это более чем в 2 раза превышает численность населения страны. Для ликвидации дефицита живого труда в управлении страной необходимо существенно повысить (в N/m = 300 раз) эффективность работы каждого сотрудника аппарата управления страны. Этого не потребовалось благодаря автоматизации информационно-аналитической работы органов управления страны с помощью ЭВМ.

Здесь очень важно понять, что автоматизировать, т.е. полностью возложить на машину, можно только те работы, которые детально изучены, подробно и полно описаны, в которых точно известно, что, в каком порядке и как надо делать в каждом случае, и точно известны все возможные случаи и обстоятельства, в которых может оказаться автомат. Только при таких условиях можно сконструировать соответствующий автомат, и только в этих условиях он может успешно выполнять работу для которой он предназначен.

Итак, автоматизация является мощным средством повышения производительности труда.


5. Отличие возможностей решения проблемы производительности труда в сложных системах от предыдущих этапов. Как и предлагается использование интеллекта человека

Одна из важнейших особенность общественного производств а состоит в непрерывном росте его эффективности, и прежде всего в повышении производительности труда. Обеспечение роста производительности труда – это очень сложный и многогранный процесс, но его итог выражается, овеществляется в развитии средств труда и методов его организации.

Академиком В. М. Глушковым показано, что сложность R объективно необходимых задач управления растет быстрее, чем квадрат m людей, занятых управленческой деятельностью: R > b m², где b = Const. Известно, что для успешного управления отраслью, где занято n человек и имеется m управляемых объектов, суммарная сложность задач управления определяется соотношением R = c (n + m)² (как правило, c = 1). Объективная тенденция увеличения сложности управления, имеющая место в современном мире, имеет место и в России (где n = 2731, m = 107). Это приводит к росту необходимых затрат живого труда, т.е. ресурсов R на управление, а возможности человеческого мозга по запоминанию и переработке информации ограничены. В среднем объем памяти человека S = 10 16 бит, а средняя производительность вычислений V = 1/3 106 опер/с.

Следовательно, при решении сложных информационных задач только административными органами муниципального и федерального уровня получим R = 1 (2731 + 10000000)² = 10002731² = 100054627458000 опер./год, а для удовлетворительного управления страной при ручной технологии требуется, как минимум, N = R/V = 3x100054627458000/1000000 = 3001636882 чел., т.е. 300 миллионов. Это более чем в 2 раза превышает численность населения страны. Для ликвидации дефицита живого труда в управлении страной необходимо существенно повысить (в N/m = 300 раз) эффективность работы каждого сотрудника аппарата управления страны. Этого не потребовалось благодаря автоматизации информационно-аналитической работы органов управления страны с помощью ЭВМ.

Здесь очень важно понять, что автоматизировать, т.е. полностью возложить на машину, можно только те работы, которые детально изучены, подробно и полно описаны, в которых точно известно, что, в каком порядке и как надо делать в каждом случае, и точно известны все возможные случаи и обстоятельства, в которых может оказаться автомат. Только при таких условиях можно сконструировать соответствующий автомат, и только в этих условиях он может успешно выполнять работу для которой он предназначен.

Итак, автоматизация является мощным средством повышения производительности труда.

Таким образом, решение проблемы производительности труда в сложных системах достигается путем автоматизации. Роль интеллекта человека при этом состоит в разработке автоматизирующих устройств.

6. Процессы познания и системность

Известно, что человек осваивает мир различными способами, Прежде всего он осваивает его чувственно, т.е. непосредственно воспринимая его через органы чувств. Характер такого познания, заключающийся в памяти и определяемый эмоциональным состоянием субъекта, является нам как целостным так и дробным - представляющим картину целиком или дробно, выделяя какие либо моменты. На основе эмоциональных состояний в человеке складывается представление об окружающем мире. Но чувственное восприятие есть свойство так же всех животных, а не только человека. Спецификой человека является более высокая ступень познания - рациональное познание, позволяющее обнаруживать и закреплять в памяти законы движения материи.

Рациональное познание системно. Оно состоит из последовательных мыслительных операций и формирует мыслительную систему, более или менее адекватную системе объективной реальности. Системна и практическая деятельность человека, причем уровень системности практики повышается с ростом знания и накопления опыта. Системность различных видов отражения и преобразования действительности человеком есть в конечном счете проявление всеобщей системности материи и ее свойств.

Системное познание и преобразование мира предполагает: рассмотрение объекта деятельности (теоретической и практической) как системы, т.е. как ограниченного множества взаимодействующих элементов, определение состава, структуры и организации элементов и частей системы, обнаружения главных связей между ними, выявление внешних связей системы, выделения из них главных, определение функции системы и ее роли среди других систем, анализ диалектики структуры и функции системы, обнаружение на этой основе закономерностей и тенденций развития системы.

Познание мира, а “научное познание” в частности, не может осуществляться хаотически, беспорядочно; оно имеет определенную систему и подчиняется определенным закономерностям. Эти закономерности познания определяются закономерностями развития и функционирования объективного мира.

7. Развитие системных представлений

Рассматривая исторические этапы развития системных представлений, важно прослеживать единство и борьбу двух противоположных подходов к познанию аналитического и синтетического. На ранних этапах развития человечества преобладал синтетический подход. Ф. Энгельс отмечал, что в древней Греции преобладало нерасчлененное знание: природа рассматривается в общем, как одно целое. Всеобщая связь явлений природы не доказывается в подробностях: она является результатом непосредственного созерцания.

Для последующего этапа метафизического способа мышления характерно преобладание анализа: Разложение природы на ее отдельные части, разделение различных процессов и предметов природы на определенные классы, исследование внутреннего строения органических тел по их анатомическим формам все это было основным условием тех исполинских успехов, которые были достигнуты в области познания природы за последние четыреста лет.

Новый, более высокий уровень системности познания представляет собой диалектический способ мышления. В развитие диалектики внесли значительный вклад представители немецкой классической философии: И. Кант, И. Фихте, Ф. Шеллинг. Кант наиболее точно выражал суждения о системности: Достигаемое разумом единство есть единство системы

Своей вершины идеалистическое понимание системы нашло у Гегеля. И только освобождение от идеализма привело к современному пониманию системности. Многое в философском понимании системы развили Маркс и Ленин.

Первым в явной форме вопрос о научном подходе к управлению сложными системами, какими является общество, поставил М.А. Ампер. При построении классификации всевозможных наук (Опыт философии наук, или аналитическое изложение классификации всех человеческих знаний ч. 1 1834 г., ч. 2 1843 г.), он выделил специальную науку об управлении государством и назвал ее кибернетикой. При этом он подчеркнул ее системные особенности: "Беспрестанно правительству приходится выбирать из различных мер ту, которая более всего пригодна к достижению цели и лишь благодаря углубленному и сравнительному изучению различных элементов, доставляемых ему для этого выбора (...) оно может составить себе общие правила поведения.

Следующая ступень развития связана с именем А.А. Богданова (настоящая фамилия Малиновский). Первый том его книги Всеобщая организационная наука (тектология) вышел в 1911 г., а в 1925 г. третий том. Идея Богданова состояла в том, что все объекты и процессы имеют определенный уровень организованности. Тектология должна изучать общие закономерности организаций для всех уровней. Он отмечает, что уровень организации тем выше, чем больше свойства целого отличаются от простой суммы свойств его частей.

По настоящему изучение теории систем началось под влиянием необходимости построение сложных технических систем преимущественно военного назначения. Были выделены достаточные средства и получены существенные результаты.

Следующий этап в развитии системных представлений связан с именем австрийского биолога Л. Берталанфи. Он пытался создать общую теорию систем любой природы на основе структурного сходства законов различных дисциплин.

Современное состояние теории систем связано с исследованиями известного бельгийского ученого Ильи Романовича Пригожина лауреата Нобелевской премии 1977 года. Исследуя термодинамику неравновесных физических систем, он понял, что обнаруженные им закономерности относятся к системам любой природы. Его основные результаты связаны с самоорганизацией систем. В переломные моменты или точки бифуркации принципиально невозможно предсказать станет система более или менее организованной.

8. Модели и моделирование

Моделирование представляет собой один из основных методов познания, является формой отражения действительности и заключается в выяснении или воспроизведении тех или иных свойств реальных объектов, предметов и явлений с помощью других объектов, процессов, явлений, либо с помощью абстрактного описания в виде изображения, плана, карты, совокупности уравнений, алгоритмов и программ.

К-во Просмотров: 271
Бесплатно скачать Учебное пособие: Основы системного анализа