Учебное пособие: Оцінка результату і похибки прямих вимірювань

Відповідно до критерію Фішера, який використовується при числі серій , різницю середніх арифметичних результатів серій спостережень вважають допустимою, якщо виконується умова

, (4.2)

де- оцінка міжгрупової дисперсії;

- середнє значення оцінок внутрішньогрупових дисперсій;

- відсоткові значення розподілу Фішера. Їх знаходять залежно від числа степенів вільності для різних рівнів значущості (найбільш широко використовуються 1% і 5%) за таблицями, які приведені у відповідній літературі [3,26]. Причому: - число степенів вільності чисельника ; - число степенів вільності знаменника , де - число спостережень у всіх Lсеріях; - число спостережень в j-й серії, .

Методика перевірки однорідності результатів серій спостережень за критерієм Фішера:

1) обчислюють середнє арифметичне значення результатів кожної серії спостережень

, ;

2) обчислюють міжгрупове (загальне) середнє арифметичне значення для всього обсягу N результатів спостережень (в усіх серіях)

(4.3)

Якщо всі серії складаються з однакового числа спостережень , то формула (4.3) спрощується

;

3) знаходять незміщену оцінку міжгрупової дисперсії результатів спостережень (розсіювання між груповими середніми арифметичними)

4) визначають середнє арифметичне значення незміщених оцінок внутрішньогрупових дисперсій результатів спостережень (середнє розсіювання всередині груп):

(4.4)

де (4.5)

- незміщена оцінка внутрішньогрупової дисперсії результатів спостережень j-ї серії, ;

5) знаходять значення за таблицею Фішера і перевіряють виконання нерівності (4.2), тобто критерію Фішера. Якщо значення відношення знаходиться поза інтервалом, який визначається нерівністю (4.2), то це означає, що середні арифметичні результатів спостережень серій мають недопустимі зміщення. У такому разі приймають рішення про неоднорідність серій спостережень, тобто про неприпустимість різниці між їхніми середніми арифметичними значеннями. Для усунення цього ефекту необхідно знайти причину розходження між середніми арифметичними значеннями і в експериментальні дані відповідної серії (серій) внести додаткову поправку (поправки). Інколи, з метою виявлення за допомогою такої перевірки прогресуючого впливу будь-якого чинника, увесь масив експериментальних даних штучно розбивають на дві або більше серій.

Для перевірки однорідності двох серій вимірювань, розподіл яких відрізняється від нормального, доцільно використовувати рангові критерії Уілкоксона і Сіджела-Тьюкі [25].

Критерії рівноточності результатів серій спостережень

Поряд з термінами “рівноточні” і “нерівноточні” результати спостережень (вимірювань) використовують також терміни “рівнорозсіяні” і “нерівнорозсіяні” результати спостережень, оскільки вони ґрунтуються на порівнянні і допустимості відмінностей оцінок внутрішньогрупових дисперсій (або СКВ) результатів спостережень. Для перевірки такої допустимості відмінностей використовують критерій Р. Фішера (при числі серій ) або критерій М. Бартлетта (при числі серій ).

Відповідно до критерію Фішера відмінність між незміщеними оцінками дисперсій результатів двох серій з числом спостережень вважається допустимою, якщо виконується умова

. (4.6)

Значення залежно від числа степенів вільності для рівнів значущості наводяться в таблицях Фішера. Число степенів вільності для оцінки дисперсії дорівнює , для оцінки дисперсії воно дорівнює . Оцінки дисперсій обчислюють за формулою (4.5), після цього перевіряють нерівність (4.6).

Критерій М. Бартлетта справедливий для і . Він ґрунтується на обчисленні - розподілу

(4.7)

де . (4.8)

Оцінки дисперсій і обчислюють за формулами (4.4) і (4.5). Якщо в усіх серіях число спостережень , то можна вважати c = 1.

Критерій Бартлетта визначається нерівністю

К-во Просмотров: 225
Бесплатно скачать Учебное пособие: Оцінка результату і похибки прямих вимірювань