Учебное пособие: Передающая система РЛС. Канал обзора (передатчик обзора)
В пространстве между резонатором и катодом электроны тормозятся до нулевой скорости и начинают обратное движение к резонатору под действием того же электрического поля, которое для них теперь является ускоряющим.
Так как поле резонатора в определенные моменты времени является ускоряющим, для пролетающих через него электронов, а для других тормозящим, то произойдет формирование сгустков электронного потока.
Рис. 2 Отражательный клистрон.
Сгруппированный электронный поток (Рис.3) возвращаясь в резонатор в момент тормозящего полупериода часть своей энергии отдаст полю резонатора, тем самым поддержит колебания в резонаторе. При этом следует помнить, что полупериод поля ускоряющий для электронов идущих от катода, одновременно будет тормозящим для электронов идущих от отражателя.
Рис.3
Усилитель 1 (2) выполнен на приборе КУ-143-1 (АБ, ВГ, ДЕ) (клистронный усилитель).
Клистронный усилитель (пролетный клистрон) (Рис.4) используется для генерирования и умножения частоты в диапазоне сантиметровых и дециметровых волн.
Действия их основаны на управлении электронными пучками по скорости.
Электроны двигающиеся от катода к коллектору на первоначальном этапе обладают одинаковой скоростью. Если на вход усилителя подан ВЧ сигнал, то электроны пролетая сетки входного резонатора, взаимодействуют с переменных полем, которое обеспечивает, в один момент времени увеличение скорости пролетающих электронов, в другой момент - уменьшение скорости.
Рис. 4 Пролетный клистрон.
Таким образом под воздействием входного сигнала происходит модуляция скоростей в электронном луче. В положительный полу-период, когда ВЧ потенциал сетки входного резонатора положительный, электроны ускоряются, в отрицательный - замедляются. Следовательно, источник входного сигнала не расходует мощность на модуляцию скорости электронов.
В результате такой модуляции возникают сгустки и разряжения электронов (Рис.5). Скорость электронов, после прохождения сеток входного резонатора, не меняется.
Сетки выходного резонатора располагаются на таком расстоянии от сеток входного резонатора чтобы в них входили наиболее плотные сгустки электронов. Пролетая между сетками выходного резонатора, сгустки вызывают в нем наведенный ток той же частоты.
Если собственная частота выходного резонатора равна частоте сигнала, то наведенный ток создает наибольшее напряжение между сетками резонатора. Таким образом происходит передача энергии от модулированного по плотности электронного потока выходному резонатору, связанному с нагрузкой.
Рис.5
Если в такой клистрон, между входным и выходным резонатором, ввести промежуточный резонатор (ненагруженный, тем самым имеющий высокую добротность), то это приведет к более сильной модуляции электронов по скорости за счет напряжения создаваемое наведенным током в сетках промежуточного резонатора.
Преобразователь 1 (2) выполнен на приборе КУ-144 (АБ, ВГ,. .) (клистронный усилитель).
На выходе смесителя (преобразователя) получаются колебания на частоте fo, для чего на него подаются ВЧ колебания от высокостабильного генератора на частоте fпр.
Коммутатор 5 (6) выполнен на СВЧ диодах, осуществляет подавление на 60 дБ сигнала частоты f (o) - 28 на входе преобразователя 1 (2) в паузе между зондирующими импульсами с временной расстановкой определяемой импульсами с формирователя ФМ1.
Формирователь ФМ1 предназначен для усиления импульсов запуска преобразователя ИЗВ поступающих с подмодулятора Р-2КП. ФМ1 выдает также импульсы управления пиковым детектором на ОМ - 9М.
Оптимизатор мощности ОМ-9М предназначен для поддержания оптимальной входной мощности усилительных 1 (2) и преобразовательных 1 (2) клистронов, которой соответствует максимальная выходная мощность клистронов, входящий в состав автоматической оптимизации входных мощностей клистрона.
Устройство автоматической оптимизации состоит из:
управляемого аттенюатора;
оптимизатора;
детекторной секции;