Учебное пособие: Платическая деформация и нагрев металла

1) Пластическая деформация - сложный физико-химический процесс, в результате которого наряду с изменением формы и строения исходного металла изменяются его механические и физико-химические свойства. Рассмотрела физическую сущность процесса пластической деформации.

Как известно, металлы и сплавы имеют кристаллическое строение, характеризующееся тем, что атомы в кристаллах располагаются в местах устойчивого равновесия в строго определенном для каждого металла порядке.

При особых условиях охлаждения металл затвердевает в виде большого кристалла правильной формы, называемого монокристаллом. Строение монокристалла определяется соответствующей кристаллической решеткой.

Рассмотрим холодную пластическую деформацию монокристалла. Под действием внешних сил в монокристалле возникают напряжения. Пока эти напряжения не превысили вполне определенной для данного металла величины (называемой пределом упругости), происходит упругая деформация. При упругой деформации атомы отклоняются с мест устойчивого равновесия на расстояния, не превышающие межатомные. После снятия нагрузки под действием межатомных сил атомы возвращаются в прежние места устойчивого равновесия, форма тела восстанавливается, при этом изменений в строении и свойствах металла не происходит. Упругая деформация сопровождается незначительным обратимым изменением объема тела, которое, например, для меди при напряжениях сжатия 100 кг/млti2 (980 Мн/м2) составляет 1,3%.

C увеличением внешней нагрузки увеличиваются и отклонения атомов. При определенных для данного металла напряжениях (пределе текучести) атомы смещаются в новые места устойчивого равновесия на расстояния, значительно превышающие межатомные. После снятия нагрузки форма монокристалла не восстанавливается, он получает пластическую деформацию.

Необратимые смещения атомов в монокристалле происходят в основном в виде скольжения и в меньшей степени, в виде двойникования.

Скольжение представляет собой смещение атомов в тонких слоях монокристалла. Смещения происходят по особым кристаллографическим плоскостям, причем расстояние между плоскостями скольжения составляет 100 200А. При определенных условиях следы скольжения можно наблюдать в виде полос на поверхности деформируемого металла.

Двойникование, которое в основном происходит при ударных нагрузках, состоит в стройном смещении группы атомов относительно особой плоскости - плоскости двойникования.

Смещенная часть монокристалла будет являться зеркальным отображением (двойником) недеформированной его части.

Пластическая деформация монокристалла сопровождается искажениeм кристаллической структуры, образованием осколков и возникновeниeм остаточных напряжений в кристалле.

Эти явления, затрудняя процесс дальнейшей деформации, вызывают изменения механических и физико-химических свойств исходного металла: прочность, твердость, электросопротивление и химическая активность увеличиваются, при oдноврeменном уменьшении пластичности, ударной вязкости, магнитной проницаемости и т. д.

Совокупность изменений механических и физико-химических свойств в результате холодной пластической деформации называют упрочнением (или наклепом).

Необходимо иметь в виду, что при пластической деформации никакого изменения плотности металла практически не происходит, его объем остается постоянным.

Как указывалось выше, применяемые в промышленности металлы и сплавы имеют поликристаллическое строение.

При обработке давлением таких металлов происходит пластичecкая деформация отдельных зерен путем скольжения и двойникования (аналогично монокристаллу) и смещение их относительно друг друга. Деформация сопровождается раздроблением зерен и их удлинением в направлении наибольшего течения металла. В результате этого, последний приобретает строчечную мелкозернистую структуру, отчетливо наблюдаемую под микроскопом (рис. 1, а).

Одновременно в зернах, так же как и при холодной деформации монокристалла, искажается кристаллическая структура, oбpазуются кристаллитныe осколки и возникают остаточные напряжения. Рассмотренные явления вызывают упрочнение поликристаллического металла.

B большинстве сплавов всегда присутствуют нeметалличeские примеси (окислы, карбиды и т. д.), которые располагаются между зернами в виде пленок или отдельных шариков. При обработке давлением эти включения раздробляются и вытягиваются, придавая металлу волокнистое строение, котоpoе при соответствующей обработке поверхности наблюдается невооруженным глазом.

Величина пластической деформации металлов ограничена их пластическими свойствами. При некоторой, вполне определенной для каждого металла, величине деформации в нем образуются микротрещины, которые при дальнейшем деформировании интенсивно развиваются и вызывают его разрушение.

2) Нагрев металла . Металлы, обрабатываемые давлением, должны обладать пластичностью, которая определяется механическими свойствами: относительным удлинением, поперечным сужением, ударной вязкостью и др. Ориентировочные данные пластичности металла можно получить испытанием на растяжение. Если предел прочности при растяжении с увеличением температуры падает, а относительное удлинение и сужение увеличиваются, то сопротивление деформированию уменьшается, металл становится ковким. Чем выше пластичность и ниже прочность, тем большей ковкостью обладает металл.

Наилучшая пластичность стали достигается нагревом, так как она непрерывно увеличивается в интервале температур примерно от 300 до 1200°С в зависимости от содержания в стали углерода.

При нагреве стали выше температуры начала горячей обработки давлением наступает перегрев, который проявляется в резком росте аустенитных зерен и понижении пластичности. Последняя в процессе обработки может нарушить целостность заготовки. Перегрев углеродистых сталей исправляют термической обработкой (отжигом). Однако исправление некоторых сталей (например, хромоникелевой) сопряжено с большими трудностями, поэтому его следует избегать.

При нагреве стали до температур, близких к температурам начала плавления, наступает пережог, характеризующийся появлением хрупкой пленки между зернами вследствие окисления их границ. Пережженный металл теряет пластичность, становится хрупким и представляет собой неисправимый брак. Следует заметить, что на перегрев и на пережог влияют и температура, и времянахождения металла в зоне высоких температур. Следовательно, горячая обработка давлением должна осуществляться ниже температуры пережога и даже ниже зоны перегрева, т. е. в интервале температур, при которых металл имеет наивысшую пластичность и наименьшую сопротивляемость деформированию.

Горячая обработка металлов давлением в зоне установленных температур снижает сопротивление деформированию примерно в 10-15 раз по сравнению с обычным холодным состоянием. Таким образом, при обработке давлением необходимо соблюдать определенный температурный интервал, зависящий от вида и химического состава сплава. Для углеродистой стали область горячей обработки давлением приведена на рис. 9. По этой диаграмме устанавливают интервал температур обработки давлением той или иной марки углеродистой стали. Из диаграммы видно, что стали с меньшим содержанием углерода обрабатываются давлением при более высоких температурах, а стали с повышенным содержанием углерода при несколько пониженных температурах. Все примеси, входящие в сталь, ведут к понижению температур обработки давлением.

Температурный интервал обработки давлением легированных сталей характерен некоторым сужением с небольшим понижением предельных температур обработки.

Медь обрабатывается в зоне температур 900-700°C, латунь в зоне 760-600°C, бронза - в зоне 900-750°С.

Алюминиевые сплавы обрабатываются при температурах 470-380°C, а магниевые стали - в зоне 430-350°C или в зоне 400-300°C в зависимости от состава марки.

Термический режим нагрева стали перед обработкой давлением должен обеспечить: получение требуемой температуры заготовки при равномерном прогреве ее по сечению и длине, сохранение целостности заготовки, минимальное обезуглероживание поверхностного слоя и минимальный отход металла в окалину (угар).

Время нагрева металла до заданной температуры зависит от температуры рабочего пространства печи, формы сечения и размеров заготовки, физических свойств металла и способа укладки заготовок на поду печи. Круглые заготовки нагреваются быстрее, чем квадратные и прямоугольные, а заготовки, уложенные в разрядку (с интервалом), нагреваются быстрее, чем заготовки, уложенные вплотную.

Чем выше температура рабочего пространства печи, тем меньше времени затрачивается на нагрев заготовки. Разница между температурой рабочего пространства печи и требуемой температурой нагрева заготовки носит название температурного напора. Величина его при обычном нагреве составляет 100-150° С.

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 259
Бесплатно скачать Учебное пособие: Платическая деформация и нагрев металла