Учебное пособие: Полупроводники. Диоды, биполярные и униполярные (МОП) транзи-сторы. Свет. Светочувствительные и светоизлучающие устройства. Оптопары

Условное обозначение диодов подразделяется на два вида:

маркировка диодов;

условное графическое обозначение (УГО) - обозначение на принципиальных электрических схемах.

Новый ГОСТ на маркировку диодов состоит из 4 обозначений:

К С 156 А
Г Д 507 Б
I II III IV
I - показывает материал полупроводника: Г (1) - германий; К (2) - кремний; А (3) - арсенид галлия.
II – тип полупроводникового диода

Д - выпрямительные, ВЧ и импульсные диоды;

А - диоды СВЧ; С - стабилитроны; В - варикапы; И - туннельные диоды; Ф - фотодиоды;

Л - светодиоды; Ц - выпрямительные столбы и блоки.

III - цифры, показывающие разделение диодов по своим электрическим параметрам

101...399 – выпрямительные

401…499 – ВЧ-диоды

501…599 - импульсные

IV - буква показывает модификацию диодов в данной группе

???. 2.8. ?) ??? ?????????? ??????????????, ???????????????, ???, ?????????? ? ????? ????; ?) ????????????; ?) ????????; ?) ?????????? ?????; ?) ????? ??????; ?) ??????????; ?) ?????????; ?) ?????????????? ?????

3. Биполярные и МОП-транзисторы

Биполярный транзистор

Биполярный транзистор - полупроводниковый прибор, который управляется током и имеет коэффициент усиления больше единицы. Он имеет два р-п- перехода и три вывода. Эмиттер (Э), база (Б) и коллектор (К). Биполярные транзисторы бывают двух структур- р- n и п-р- n .

Для транзисторов структуры р- n справедливо все то, что относится и к структуре п-р-п , отличая только в полярности источника питания. Упрощенная структурная схема транзистора нарисована на рис. 2.9. Вывод базы располагается между эмиттером и коллектором, толщина базы очень мала - десятки микрометров (1000 мкм = 1 мм). Благодаря наличию двух р- n переходов, любой транзистор (биполярный) можно представить в виде двух диодов: с большим напряжением пробоя между базой и коллектором и с малым напряжением пробоя между базой и эмиттером. Как видно, коллекторный и эмиттерный р-п переходы по отношению к базе неравнозначны, поэтому "путать" их нельзя.

Рис. 29. Структурная и упрощенная схемы строения биполярного транзистора

Существует три схемы включения биполярного транзистора, с общей базой (ОБ), общим коллектором (ОК) и общим эмиттером (ОЭ) При включении транзистора по схеме с ОБ усиливается только напряжение, с ОК - только ток, а с ОЭ - и напряжение, и ток. Схема с ОБ в цифровой технике практически никогда не используется, поэтому здесь она рассматриваться не будет.

При включении транзистора структуры n-p-п на его эмиттер подают отрицательный потенциал, а на коллектор - положительный. При соединении вывода базы с эмиттером, или если базовый вывод попросту "в обрыве" транзистор закрыт и через переход коллектор-эмиттер течет ничтожный ток, при соединении с коллектором он открывается и через транзистор течет довольно большой ток.

Рассмотрим схему включения транзистора с общим эмиттером (рис, 2,10). Эмиттер соединен с общим проводом ("минусовой" вывод источника питания), а коллектор через нагрузку (на схеме - через лампочку) соединен с положительным выводом источника питания. Будем плавно увеличивать напряжение на базе относительно эмиттера (общего провода). Потенциальный барьер перехода база-эмиттер при этом будет понижаться, и его сопротивление уменьшится. Через переход начнет течь ток эмиттера I Э обусловленный инжекцией электронов из эмиттера в базу. Но так как база имеет очень маленькую толщину, то большинство инжектированных из эмиттера в базу электронов "по инерции" пролетают потенциальный барьер перехода база-коллектор, захватываются его полем и втягиваются в коллектор, откуда они попадают в нагрузку, где и рекомбинируют с дырками. Благодаря выделяющейся при этом мощности лампочка начинает светиться. Напряжение на коллекторном выводе относительно общего провода уменьшается.

Рис. 2.10. Схема включения биполярного транзистора с общим эмиттером

Так как транзистор представляет собой монолитный кристалл кремния и толщина его базы ни при каких внешних воздействиях не изменяется, то отношение количества электронов, захваченных коллектором, к количеству электронов, выделившихся в базе при неизменном напряжении питания, также неизменно. Это отношение называется статическим коэффициентом передачи тока (коэффициент усиления) и определяется по формуле:

У современных биполярных транзисторов коэффициент передачи тока h21э больше 100, т. е. коллекторный ток в 100 раз больше базового.

?
??? ?????????? ?????????? ??????? ????????????? ????????????? ?????? ???????? ????-?????????. ??????? ?????????? ??????????, ??????? ????? "?????????" ????????? (??? ?????????? ???? ????) ???????????. ?????????????, ????? ??????????? ? ??????????? h21э .

Если и дальше увеличивать ток базы, то потенциальный барьер эмиттерного перехода будет уменьшаться до тех пор, пока не исчезнет совсем. Электроны смогут беспрепятственно переходить из эмиттера в базу и также беспрепятственно захватываться полем коллектора. Падение напряжения на переходе коллектор эмиттер будет уменьшаться (при увеличении тока базы и неизменном сопротивлении нагрузки и напряжении питания) до тех пор, пока не уменьшится почти до нуля.

Такой режим работы транзистора, несмотря на то, что он требует повышенного тока управления (так как коэффициент h21э уменьшается), очень широко используется в цифровой технике.

Полевые транзисторы

Полевые транзисторы - это полупроводниковые приборы, сопротивление канала которых изменяется в широких пределах под воздействием приложенного к управляющему выводу (затвору) напряжения. Таким образом, полевые транзисторы, в отличие от биполярных, управляются не током, а напряжением. Ток же, текущий через управляющий вывод (ток утечки затвора I УТ ), крайне мал, и у современных полевых транзисторов его смело можно приравнять к нулю.

В зависимости от строения своих "внутренностей" полевые транзисторы делятся на две группы:

К-во Просмотров: 304
Бесплатно скачать Учебное пособие: Полупроводники. Диоды, биполярные и униполярные (МОП) транзи-сторы. Свет. Светочувствительные и светоизлучающие устройства. Оптопары