Учебное пособие: Полупроводниковые диоды

Так как обратные токи невелики, а индивидуальные разбросы могут быть значительными, то в технической документации диода указывают их максимально возможные величины, получаемые при определенных условиях. В дальнейшем, для обозначения обратного тока мы будем использовать обозначение I0, не учитывая его разделение на составляющие. Для сохранения преемственности вычисления прямого тока в выражение (1.2) вводят поправочный коэффициент т:

, (1.8)

который для кремниевых диодов может принимать значения 2 и выше.

Свойства p-n перехода существенно зависят от температуры окружающей среды. При повышении температуры возрастает генерация пар носителей заряда – электронов и дырок, т.е. увеличивается концентрация неосновных носителей и собственная проводимость полупроводника, что, прежде всего, сказывается на изменении обратного тока. При увеличении температуры обратный ток увеличивается примерно в 2 раза при изменении температуры (DT) на каждые 100С у германиевых и на каждые 7,50С у кремниевых диодов:

, (1.9)

где обратный ток измерен при температуре .

Максимально допустимое увеличение обратного тока определяет максимально допустимую температуру диода, которая составляет 80 … 100°С для германиевых диодов и 150 … 200°С – для кремниевых.

Минимально допустимая температура диодов лежит в пределах минус (60 … 70) °С.

Прямой ток p-n перехода при нагреве возрастает не так сильно, как обратный ток. Это объясняется тем, что прямой ток возникает в основном за счет примесной проводимости. Но концентрация носителей, определяемых примесью, от температуры практически не зависит. Температурная зависимость прямой ветви вольтамперной характеристики в соответствии с формулой (1.4) определяется изменениями тока І0 и показателя экспоненты, в который входит температурный потенциал. Увеличение обратного тока приводит к изменению падения напряжения на нем при прохождении прямого тока. Если через германиевый диод протекает постоянный ток, при изменении температуры падение напряжения на диоде изменяется приблизительно на 2,5 мВ/°С:

. (1.10)

Для диодов в интегральном исполнении dU/dT составляет от – 1,5 мВ/°С в нормальном режиме до – 2 мВ/°С в режиме микротоков.

При определенном значении обратного напряжения Uобр = Uпроб, начинается лавинообразный процесс нарастания обратного тока Iобр, соответствующий электрическому пробою p-n перехода (отрезок АВ рисунка 1.5).

Рисунок 1.5. Вольтамперная характеристика диода (стабилитрона)

Пробой диода возникает либо в результате воздействия сильного электрического поля в р-п переходе, либо в результате разогрева перехода в связи с выделением на нем значительной мощности, превышающую возможности теплоотвода. Первый тип пробоя называется электрическим, второй – тепловым. Электрический пробой обратим, т.е. после уменьшения напряжения Uобр работа диода соответствует пологому участку обратной ветви ВАХ. Хотя, если обратный ток при электрическом пробое не ограничить, то он переходит в тепловой (участок ВАХ после точки В). Тепловой пробой необратим, так как разрушает p-n переход.

Электрический пробой характерен для кремниевых диодов. В германиевых диодах при увеличении обратного напряжения тепловой пробой p-n перехода наступает практически одновременно с началом лавинообразного нарастания тока Iобр.

Электрический пробой бывает двух видов. Первый из них возникает в узких переходах, в которых под действием сильного электрического поля электроны могут

К-во Просмотров: 270
Бесплатно скачать Учебное пособие: Полупроводниковые диоды