Учебное пособие: Принципы разработки алгоритмов и программ для решения прикладных задач
5) присвоить переменной х значение у/2;
6) присвоить переменной у значение x2;
7) присвоить переменной у значение y-а;
8) присвоить переменной у значение у/c0;
9) присвоить переменной d значение у/2;
10) сравнить d и e; если d > e, то перейти к команде 3, иначе перейти к следующей команде;
11) вывести числа х, а и e;
12) стоп.
В этом алгоритме все команды, кроме 10, предполагают переход к следующим за ними по записи командам, и лишь команда 10, являющаяся командой условного перехода, меняет порядок исполнения команд - после нее в нарушение порядка может выполняться команда 3, т.е. она определяет циклическую конструкцию в алгоритме.
Поясним эту программу. Команда 2 помещает значение начального приближения x0 в ячейку памяти, в которой хранятся значения переменной х (на каждом этапе вычислений в этой ячейке хранится значение х, равное значению одного из членов рекуррентной последовательности xn).
Команды 3-5 вычисляют по числу х число (х + а/х) /2. Результат помещается в ячейку памяти, в которой хранится значение переменной х, при этом старое значение «стирается» новым. Команды 6-9 вычисляют величину
,
с помощью которой оценивается сверху разность х - . Важное значение имеет команда 10. По ней не производятся вычисления, а сравниваются между собой вычисленное значение 5 и заданная точность e. Если d > e, то управляющее устройство вернет вычислительный процесс к команде 3 и заставит повторить процесс.
В противном случае, когда требуемая точность достигнута, печатается полученный результат и работа прекращается.
Данный алгоритм весьма экономичен: в качестве рабочих он использует всего две ячейки памяти (для переменных х и у), его команды так продуманы, что никакие операции не выполняются с избыточным повторением.
В данном примере не были использованы какие-либо специальные обозначения команд, чтобы сделать их независимыми от языка конкретных ЭВМ (такие языки называют Ассемблерами), чтобы стал ясен общий характер операционального подхода к разработке алгоритмов. Однако, ориентированность этого подхода на возможности и особенности ЭВМ с появлением большого числа компьютеров 3-го и особенно 4-го поколений не позволяла перейти к массовому промышленному программированию и стала сдерживать развитие вычислительной техники. Отметим основные недостатки алгоритмов, к которым приводил операциональный подход:
• злоупотребление командой условного и безусловного переходов зачастую приводило к очень запутанной структуре программы, напоминавшей по образному сравнению «блюдо спагетти»;
• вместе с разнообразными уловками, направленными на повышение эффективности программы (т.е. минимальных требований к оперативной памяти и минимального времени выполнения), это приводило к непонятности программ, их ненадежности, трудностям в отладке и модификации, делая программирование трудоемким, сложным и чрезвычайно дорогостоящим.
Необходимость ориентироваться на ограниченный набор команд компьютера, на его скромные возможности приводила к огромной трудоемкости, к сложности программ, к проблемам, связанным с ошибками в них. В результате узким местом в развитии вычислительной техники оказалось именно программирование.
2. СТРУКТУРНЫЙ ПОДХОД
С появлением массовых ЭВМ 3-го поколения устаревшая технология программирования оказалась основным фактором, сдерживающим развитие и распространение компьютерных (информационных) технологий, что подтолкнуло ведущие в этой сфере деятельности фирмы, в первую очередь IBM, к разработке новых методологий программирования. Появившийся в начале 1970-х годов новый подход к разработке алгоритмов получил название структурного.
С появлением структурного программирования описанные выше трудности были во многом преодолены. В основе технологических принципов структурного программирования лежит утверждение о том, что логическая структура программы может быть выражена комбинацией трех базовых структур: следования, ветвления и цикла (это содержание теоремы Бема-Якопини).
Следование - самая важная из структур. Она означает, что действия могут быть выполнены друг за другом, рис.1. 19:
Рис.1. Структура «следование»
Эти прямоугольники могут представлять как одну единственную команду, так и множество операторов, необходимых для выполнения сложной обработки данных.
Ветвление - это структура, обеспечивающая выбор между двумя альтернативами. Выполняется проверка, а затем выбирается один из путей (рис.1. 20).
Эта структура называется также «ЕСЛИ - ТО - ИНАЧЕ», или «развилка». Каждый из путей (ТО или ИНАЧЕ) ведет к общей точке слияния, так что выполнение программы продолжается независимо от того, какой путь был выбран.