Учебное пособие: Синхронные машины. Машины постоянного тока
В турбогенераторах мощностью более 60 МВт применяют непосредственное внутреннее охлаждение проводов обмоток водородом, дистиллированной водой и трансформаторным маслом.
В турбогенераторах с косвенным водородным охлаждением избыточное давление водорода составляет (0,035 – 0,05)·105 Па, при этом исключается проникновение воздуха внутрь корпуса через неплотности и масляные уплотнения концов вала. Смесь водорода с воздухом взрывоопасна при содержании водорода в смеси от 7 до 70%, поэтому содержание водорода в корпусе поддерживается на уровне примерно 97%. Несмотря на это, корпус машины с водородным охлаждением обычно рассчитывают так, чтобы давление, развивающееся при возможном взрыве водорода, не повредило машину.
В турбогенераторах с непосредственным (внутренним) охлаждением охлаждающее вещество циркулирует внутри проводников обмоток (рис. 1.8, а) или по каналам, непосредственно соприкасающимся с проводниками (рис. 1.8, б, в). При использовании для этой цели водорода избыточное давление в машине повышается до (3–4)·105 Па, что обеспечивает значительное увеличение теплоемкости, коэффициента теплопередачи и способности к теплоудалению по сравнению с воздухом при атмосферном давлении (примерно в 3–4 раза). Еще большей способностью к теплоудалению обладают трансформаторное масло и вода (соответственно в 16,5 и в 125 раз больше, чем у воздуха).
Рис. 1.8 – Выполнение внутренних каналов в обмотках статора (а) и ротора (б, в)
в турбогенераторах с непосредственным охлаждением:
1 – пазовая изоляция, 2 – полые проводники, 3 – каналы для прохода охлаждающего вещества, 4 – изоляционные прокладки, 5 – клин, 6 – канал для забора и выброса охлаждающего газа из зазора между ротором и статором
В настоящее время в СССР применяют следующие системы непосредственного охлаждения турбогенераторов:
а) аксиальная система охлаждения обмоток статора, ротора и сердечника статора водородом повышенного давления, который подается с помощью центробежного компрессора, проходит по аксиальным каналам сердечника статора и полым проводникам обмоток и поступает в газоохладитель, охлаждаемый водой (турбогенераторы типа ТГВ-200; ТГВ-300). При водородном охлаждении газоохладители встраивают в корпус статора или в концевые части машины;
б) многоструйная радиальная система охлаждения водородом повышенного давления, в которой обмотка ротора имеет непосредственное охлаждение, а обмотка статора – поверхностное (турбогенераторы типа ТВФ). При этом водород нагнетается двумя вентиляторами, установленными по концам вала, и разделяется на отдельные струи, которые охлаждают лобовые части обмоток статора и ротора, сердечник статора (проходя по радиальным каналам), обмотку ротора и наружные поверхности статора и ротора. Отдельные струи сходятся в центральной части машины и подаются оттуда в газоохладитель;
в) многоструйная радиальная система охлаждения сердечника статора и обмотки ротора водородом и одноструйная система охлаждения обмотки статора водой (турбогенераторы типа ТВВ);
Рис. 1.9 – Схемы подачи водорода в проводники обмотки ротора в турбогенераторах
при аксиальной и многоструйной радиальной системах охлаждения:
1 – лобовые части обмотки, 2 – каналы для входа водорода, 3 – клинья,
4 – каналы для выхода водорода, б – проводники обмотки
г) система охлаждения обмоток статора и ротора водой, а сердечников статора и ротора, а также внутреннего пространства машины воздухом или водородом (турбогенераторы типа ТГВ-500);
д) система охлаждения обмотки и сердечника статора маслом, обмотки ротора водой, а сердечника ротора и внутреннего пространства машины воздухом или водородом. В этом случае ротор отделен от статора изоляционным цилиндром и полость статора заполнена маслом (турбогенераторы ТГМ).
На рис. 1.9 показаны схемы подачи охлаждающего газа в проводники обмотки ротора при непосредственном водородном охлаждении. При аксиальной системе охлаждения водород попадает под бандажные кольца ротора с обеих сторон машины (рис. 1.9, а), охлаждает их и выбрасывается через радиальные отверстия в зазор между ротором и статором. При многоструйной радиальной системе охлаждения водород, поступивший в воздушный зазор через радиальные каналы статора в зоне выхода из них газа, захватывается специальными заборниками внутрь ротора (рис. 1.9, б ), проходит по каналам, имеющимся в пазах ротора, и выбрасывается обратно в воздушный зазор в зоне входа газа в каналы статора.
На рис. 1.10, а, б показано устройство для подачи и отвода охлаждающей воды к проводникам обмотки статора. Проводники обмотки статора сообщаются с коллекторами холодной и нагретой воды патрубками, выполненными из изоляционного материала. Нагретая вода проходит через охладитель и вновь поступает в коллектор холодной воды.
Роторы турбогенераторов изготовляют из цельных поковок высококачественной стали (рис. 1.11, а ). Диаметр ротора D определяется условиями механической прочности; для ограничения действующих на ротор центробежных сил он не должен превышать 1,0–1,5 м, поэтому приходится увеличивать его длину. Однако и длина ротора ограничивается допустимым прогибом вала и возникающими при этом вибрациями.
Рис. 1.10 – Устройство для подачи и отвода охлаждающей воды в проводники обмотки статора: а – общий вид; б – конструктивная схема:
1 – сборный коклектор охлаждающей воды, 2 – гибкие изолирующие шланги,
3 – сборный коллектор нагретой воды, 4 – водораспределительный наконечник,
5 – стержень, подводящий воду к обмотке, 6 – стержень, отводящий воду от обмотки
Для того чтобы прогиб вала при неподвижном роторе не превышал 2,5 мм, длина ротора l турбогенератора не должна превышать 7,5–8,5 м. Следовательно, отношение l /D достигает 5 ÷ 6. Указанные размеры ротора являются предельными по возможностям металлообрабатывающих заводов. В СССР такие поковки ротора выпускают с 1932 г. Хотя с тех пор ощутимого прогресса в увеличении размеров ротора не произошло (и в СССР, и за рубежом), мощность турбогенератора со 100 МВ-А при воздушном охлаждении возросла до 800–1200МВ·А за счет снижения механических потерь при переходе к водородному охлаждению поверхности вращающегося ротора и за счет увеличения электромагнитных нагрузок при повышенной интенсивности охлаждения в системах, описанных выше.
Рис. 1.11 – Общий вид роторов турбогенератора (а), гидрогенератора (б) и синхронного двигателя (в):