Учебное пособие: Статический режим транзисторных усилительных каскадов

Интересную возможность предоставляет программа схемотехнического моделирования для сопоставления характеристик двух и более схем. Если создать входной файл одновременно для нескольких схем, подключив их к одному источнику питания, и глобальными узлами сделать шины питания и общую шину, легко на одном графике увидеть результаты моделирования той и другой схемы.

Для иллюстрации результатов моделирования в качестве транзистора использован КТ316В (модель в Spice- библиотеке имеет имя Q2T316B).

Для расчёта статического режима можно использовать директиву "BiasPointDetail". Тогда результаты в виде таблицы будут помещены в выходной файл ExamineOutput меню Analysis и координаты статического режима – токами в ветвях или напряжения в узлах можно увидеть на графике схемы при нажатии пиктограммы или в графическом редакторе Schematics (см. разд. 10). Можно также задать вариацию напряжения источника питания ЕП в пределах ± 10 % и увидеть результаты при использовании постграфического процессора Probe. Температурные исследования схем можно провести с помощью вложенных циклов по директиве "DCSweep", но лучше, для большей наглядности, провести моделирование дважды – для вариации напряжения питания и для вариации температуры.

Результаты моделирования схем рисунков 3а и г приведены на рисунках 4 и 5. Стабильность схем при вариации напряжения питания примерно одинакова.

Рис. 4. Зависимость изменения тока коллектора и потенциала коллектора при изменении напряжения питания

кирхгоф ток коллектор напряжение стабильность

При изменении температуры окружающей среды стабильность схемы г выше, так как в ней действует ещё один контур отрицательной обратной связи через резистор RЭ , а влияние температурного изменения тока IКБ.0 ослаблено засчёт наличия резистора R2 [3]. Взяв транзистор с другим значением b , можно убедиться, что и в этом случае статический режим схемы рисунка 3г изменяется незначительно, в отличие от схемы а. В этом читателю предлагается убедиться самостоятельно.

Достаточно просто произвести оценочный расчёт схемы одиночного каскада при двухполярном источнике питания (рис. 3б). Если пренебречь влиянием тока базы транзистора, то ток коллектора и ток эмиттера можно считать равными. Ток эмиттера задаётся с помощью резистора RЭ и источника питания Е2:

,

а выбор резистора RБ можно рекомендовать из условия:

,

если нет других ограничений.

Потенциал коллектора в этом случае определится как:

(4)

Рис. 5. Зависимость координат статического режима от температуры

Как и в предыдущих случаях, потенциал коллектора выбирается так, чтобы напряжение между базой и коллектором составляло примерно половину напряжения питания источника Е1.

Для схемы рисунка 3в в первом приближении можно считать, что падение напряжения на диоде VD1 а ток базы пренебрежимо мал. Тогда коллекторный ток определяется током эмиттера:

, (5)

а сопротивление резисторов делителя должно быть таким, чтобы ток делителя был соизмерим с током коллектора (для повышения КПД схемы необходимо ток делителя выбирать как можно меньше, если это не противоречит некоторым другим ограничениям). Потенциал коллектора определяется аналогично предыдущему случаю (4).

Для каскодной схемы включения (рис. 3д) при двухполярном питании задача определения координат статического режима решается подобно варианту рисунка 3б, поскольку ток коллектора транзистора VT2 является током эмиттера транзистора VT1:

где – коэффициент передачи тока эмиттера i -го транзистора.

Потенциал базы транзистора VT1 определяется напряжением стабилизации U СТ стабилитрона VD1, а сопротивление резистора R4 выбирается из условия:

,

где I С. МИН – минимальный ток стабилизации стабилитрона.

Оценочный расчёт статического режима многокаскадной схемы с непосредственными связями (рис. 3е) проводится следующим образом. Вначале задаются напряжением U вых (если оно не задано). Далее, пренебрегая влиянием токов баз, определяют потенциал коллектора транзистора VT1:

К-во Просмотров: 182
Бесплатно скачать Учебное пособие: Статический режим транзисторных усилительных каскадов