Учебное пособие: Строение растительной клетки. Ткани растений
Некоторые микротельца, называемые проксисомами, играют важную роль в метаболизме гликолевой кислоты, имеющем непосредственное отношение к фотодыханию. В зеленых листьях они связаны с митохондриями и хлоропластами. Другие микротельца, называемые, глиоксисомами, содержат ферменты, необходимые для превращения жиров в углеводы. Это происходит во многих семенах во время прорастания.
Вакуоли – это отграниченные мембраной участки клетки, заполненные жидкостью – клеточным соком. Они окружены тонопластом (вакуолярной мембраной).
Молодая растительная клетка содержит многочисленные мелкие вакуоли, которые по мере старения клетки сливаются в одну большую. В зрелой клетке вакуолью может быть занято до 90% её объема. При этом цитоплазма прижата в виде тонкого периферического слоя к клеточной оболочке. Увеличение размера клетки в основном происходит за счет роста вакуоли. В результате этого возникает тургорное давление и поддерживается упругость ткани. В этом заключается одна из основных функций вакуоли и тонопласта.
Основной компонент сока – вода, остальные варьируют в зависимости от типа растения и его физиологического состояния. Вакуоли содержат соли, сахара, реже белки. Тонопласт играет активную роль в транспорте и накоплении в вакуоли некоторых ионов. Концентрация ионов в клеточном соке может значительно превышать ее концентрацию в окружающей среде. При высоком содержании некоторых веществ в вакуолях образуются кристаллы. Чаще всего встречаются кристаллы оксалата кальция, имеющие различную форму.
Вакуоли – места накопления продуктов обмена веществ (метаболизма). Это могут быть белки, кислоты и даже ядовитые для человека вещества (алкалоиды). Часто откладываются пигменты. Голубой, фиолетовый, пурпурный, темно-красный, пунцовый придают растительным клеткам пигменты из группы антоцианов. В отличие от других пигментов они хорошо растворяются в воде и содержатся в клеточном соке. Они определяют красную и голубую окраску многих овощей (редис, турнепс, капуста), фруктов (виноград, сливы, вишни), цветов (васильки, герани, дельфиниумы, розы, пионы). Иногда эти пигменты маскируют в листьях хлорофилл, например, у декоративного красного клена. Антоцианы окрашивают осенние листья в ярко-красный цвет. Они образуются в холодную солнечную погоду, когда в листьях прекращается синтез хлорофилла. В листьях, когда антоцианы не образуются, после разрушения хлорофилла заметными становятся желто-оранжевые каротиноиды хлоропластов. Наиболее ярко окрашены листья холодной ясной осенью.
Вакуоли участвуют в разрушении макромолекул, в круговороте их компонентов в клетке. Рибосомы, митохондрии, пластиды, попадая в вакуоли, разрушаются. По этой переваривающей активности их можно сравнить с лизосомами – органеллами животных клеток.
Вакуоли образуются из эндоплазматической сети (ретикулума)
Рибосомы. Маленькие частицы (17 – 23нм), состоящие примерно из равного количества белка и РНК. В рибосомах аминокислоты соединяются с образованием белков. Их больше в клетках с активным обменом веществ. Рибосомы располагаются в цитоплазме клетки свободно или же прикрепляются к эндоплазматическому ретикулуму (80S). Их обнаруживают и в ядре (80S), митохондриях (70S), пластидах (70S).
Рибосомы могут образовывать комплекс, на которых происходит одновременный синтез одинаковых полипептидов, информация о которых снимается с одной молекулы и РНК. Такой комплекс называется полирибосомами (полисомами). Клетки, синтезирующие белки в больших количествах, имеют обширную систему полисом, которые часто прикрепляются к наружной поверхности оболочки ядра.
Эндоплазматический ретикулум. Это сложная трехмерная мембранная система неопределенной протяженности. В разрезе ЭР выглядит как две элементарные мембраны с узким прозрачным пространством между ними. Форма и протяженность ЭР зависят от типа клетки, ее метаболической активности и стадии дифференцировки. В клетках, секретирующих или запасающих белки, ЭР имеет форму плоских мешочков или цистерн, с многочисленными рибосомами, связанными с его внешней поверхностью. Такой ретикулум называется шероховатым эндоплазматическим ретикулумом. Гладкий ЭР обычно имеет трубчатую форму. Шероховатый и гладкий эндоплазматические ретикулумы могут присутствовать в одной и той же клетке. Как правило, между ними имеются много численные связи.
Эндоплазматический ретикулум функционирует как коммуникационная система клетки. Он связан с внешней оболочкой ядра. Фактически эти две структуры образуют единую мембранную систему. Когда ядерная оболочка во время деления клетки разрывается, ее обрывки напоминают фрагменты ЭР. Эндоплазматический ретикулум – это система транспортировки веществ: белков, липидов, углеводов, в разные части клетки. эндоплазматические ретикулумы соседних клеток соединяются через цитоплазматические тяжи – плазмодесмы – которые проходят сквозь клеточные оболочки.
Эндоплазматический ретикулум – основное место синтеза клеточных мембран. В некоторых растительных клетках здесь образуются мембраны вакуолей и микротелец, цистерны диктиосом.
Аппарат Гольджи. Этот термин используется для обозначения всех диктиосом , или телец Гольджи , в клетке. Диктиосомы – это группы плоских, дисковидных пузырьков, или цистерн, которые по краям разветвляются в сложную систему трубочек. Диктиосомы у высших растений состоят из 4 – 8 цистерн, собранных вместе.
Обычно в пачке цистерн различают формирующуюся и созревающую стороны. мембраны формирующихся цистерн по структуре напоминают мембраны ЭР, а мембраны созревающих цистерн – плазматическую мембрану.
Диктиосомы участвуют в секреции, а у большинства высших растений – в образовании клеточных оболочек. Полисахариды клеточной оболочки, синтезируемые диктиосомами, накапливаются в пузырьках, которые затем отделяются от созревающих цистерн. Эти секреторные пузырьки мигрируют и сливаются с ЦПМ; при этом содержащиеся в них полисахариды встраиваются в клеточную оболочку. Некоторые вещества, накапливающиеся в диктиосомах, образуются в других структурах, например, в ЭПР, а затем транспортируются в диктиосомы, где видоизменяются (модифицируются) перед секрецией. Например, гликопротеины – важный строительный материал клеточной оболочки. Белковая часть синтезируется полисомами шероховатого ЭПР, углеводная - в диктиосомах, где обе части объединяются, образуя гликопротеины.
Мембраны – динамические, подвижные структуры, которые постоянно изменяют свою форму и площадь. На подвижности мембран основана концепция эндоплазматической системы. Согласно этой концепции, внутренние мембраны цитоплазмы, кроме мембран митохондрий и пластид, представляют собой единое целое и берут начало от эндоплазматического ретикулума. Новые цистерны диктиосом образуются из эндоплазматического ретикулума через стадию промежуточных пузырьков, а секреторные пузырьки, отделяющиеся от диктиосом, в конечном итоге способствуют формированию плазматической мембраны. Таким образом, эндоплазматический ретикулум и диктиосомы образуют функциональное целое, в котором диктиосомы играют роль промежуточных структур в процессе преобразования мембран, подобных эндоплазматическому ретикулуму, в мембраны, подобные плазматической. В тканях, клетки которых слабо растут и делятся, постоянно происходит обновление мембранных компонентов.
Микротрубочки обнаружены практически во всех эукариотических клетках. Представляют собой цилиндрические структуры диаметром около 24 нм. Длина их варьирует. Каждая трубочка состоит из субъединиц белка, называемого тубулином. Субъединицы образуют 13 продольных нитей, окружающих центральную полость. Микротрубочки – это динамические структуры, они регулярно разрушаются и образуются на определенных стадиях клеточного цикла. Их сборка происходит в особых местах, которые называются центрами организации микротрубочек. В растительных клетках они имеют слабовыраженную аморфную структуру.
Функции микротрубочек: участвуют в образовании клеточной оболочки; направляют пузырьки диктиосом к формирующейся оболочке, подобно нитям веретена, которые образуются в делящейся клетке; играют определенную роль в формировании клеточной пластинки (первоначальной границы между дочерними клетками). Кроме того, микротрубочки – важный компонент жгутиков и ресничек, в движении которых, играют немаловажную роль.
Микрофиламенты, подобно микротрубочкам, найдены практически во всех эукариотических клетках. Представляют собой длинные нити толщиной 5 – 7 нм, состоящие из сократительного белка актина. Пучки микрофиламентов встречаются во многих клетках высших растений. По-видимому, играют важную роль в токах цитоплазмы. Микрофиламенты вместе с микротрубочками образуют гибкую сеть, называемую цитоскелетом.
Основное вещество довольно долго считали гомогенным (однородный) богатым белком раствором с малым количеством структур или вообще бесструктурным. Однако в настоящее время, используя высоковольтный электронный микроскоп, было установлено, что основное вещество представляет трехмерную решетку, построенную из тонких (диаметром 3 – 6 нм) тяжей, заполняющих всю клетку. Другие компоненты цитоплазмы, включая микротрубочки и микрофиламенты, подвешены к этой микротрабекулярной решетке.
Микротрабекулярная структура представляет собой решетку из белковых тяжей, пространство между которыми заполнено водой. Вместе с водой решетка имеет консистенцию геля, гель имеет вид студенистых тел.
К микротрабекулярной решетке прикреплены органеллы. Решетка осуществляет связь между отдельными частями клетки и направляет внутриклеточный транспорт.
Липидные капли – структуры сферической формы, придающие гранулярность цитоплазме растительной клетки под световым микроскопом. На электронных микрофотографиях они выглядят аморфными. Очень похожие, но более мелкие капли встречаются в пластидах.
Липидные капли, принимая за органеллы, называли их сферосомами и считали, что они окружены одно- или двуслойной мембраной. Однако последние данные показывают, что у липидных капель мембран нет, но они могут быть покрыты белком.
Эргастические вещества – это «пассивные продукты» протопласта: запасные вещества или отходы. Они могут появляться и исчезать в разные периоды клеточного цикла. Кроме зерен крахмала, кристаллов, антоциановых пигментов и липидных капель. К ним относятся смолы, камеди, танины и белковые вещества. Эргастические вещества входят в состав клеточной оболочки, основного вещества цитоплазмы и органелл, в том числе вакуолей.
Жгутики и реснички – это тонкие, похожие на волоски структуры, которые отходят от поверхности многих эукариотических клеток. Имеют постоянный диаметр, но длина колеблется от 2 до 150 мкм. Условно более длинные и немногочисленные из них называют жгутиками, а более короткие и многочисленные - ресничками. Четких различий между этими двумя типами структур не существует, поэтому для обозначения обоих используют термин жгутик.
У некоторых водорослей и грибов жгутики являются локомоторными органами, с помощью которых они передвигаются в воде. У растений (например, мхов, печеночников, папоротников, некоторых голосеменных) только половые клетки (гаметы) имеют жгутики.
Каждый жгутик имеет определенную организацию. Наружное кольцо из 9 пар микротрубочек окружает две дополнительные микротрубочки, расположенные в центре жгутика. Содержащие ферменты «ручки» отходят от одной микротрубочки каждой из наружных пар. Это основная схема организации 9 + 2 обнаружена во всех жгутиках эукариотических организмов. Считают, что движение жгутиков основано на скольжении микротрубочек, при этом наружные пары микротрубочек движутся одна вдоль другой без сокращения. Скольжение пар микротрубочек относительно друг друга вызывает локальное изгибание жгутика.
Жгутики «вырастают» из цитоплазматических цилиндрических структур, называемых базальными тельцами, образующимися и базальную часть жгутика. Базальные тельца имеют внутреннее строение, напоминающее строение жгутика, за исключением того, что наружные трубочки собраны в тройки, а не в пары, а центральные трубочки отсутствуют.