Учебное пособие: Теория искусственного интеллекта

Связь с внешним миром в ИС осуществляется через систему восприятия. Система восприятия формирует ситуационные знания ИС, т.е. знания о текущей ситуации. Первичными источниками информации являются различные сенсоры. Информация от сенсоров преобразуется, обрабатывается и представляется в виде, удобном для дальнейших преобразований.

Дальнейшее преобразование связано с синтаксической и семантической интерпретацией. При синтаксической интерпретации формируется представление воспринимаемого мира на некотором внутреннем языке ИС, при этом смысл воспринимаемых явлений остается не раскрытым. Семантическая интерпретация связана с выявлением смысла воспринимаемой информации. Завершающая процедура – построение модели текущего состояния мира.

Система планирования и исполнения действий формирует и реализует программы воздействий на внешний мир, что ведет к достижению поставленной цели. Планирование действий ИС представляется как процесс решения задачи. Решение задачи – это последовательность действий, переводящая текущее состояние мира в желаемое. Для выполнения действий их необходимо расчленить на необходимые движения.

Дополнения.

Интеллектуальные роботы часто называют интегральными. Сейчас для понятия «интегральный робот» используется классификация робототехнических устройств, в основу которой положены пять групп функционально завершенных систем.:

- группа В – системы восприятия звуковой, тактильной и других видов информации о внешней среде;

- группа М – системы воздействия на объекты внешнего мира (манипуляторы);

- группа Т – системы, обеспечивающие перемещение робота;

- группа П – системы планирования действий и решения задач;

- группа Р – системы, обеспечивающие связь робота с оператором и/или другими роботами.

Любой конкретный робот может быть образован сочетанием всех или части перечисленных систем, например, ВМП – очувствленные роботы с системой планирования действий.

Научные школы в области ИИ

Тьюринг Алан (1912 - 1954) – английский математик, сформировавший основные принципы работы современных ЭВМ. В 36-37 гг. задолго предсказал возможность диалогового общения человека с компьютером, использование последнего как партнера в игровых ситуациях и пр.

Минский М. – проф. Массачусетского технологического института; исследования по моделированию головного мозга.

Ньюэелл – создатель компьютерной программы простых выводов.

Маккарти Дж. – инициатор образования научного кружка по ИИ в 1956 г.; вошли: Минский, Ньювел, Моншенон, Саймон и др. Введены понятия ИИ, распознавания образов и пр.

В середине 60-х г. создаются НИИ лаборатории по ИИ в Массачусетском технологическом институте, Стенфордском ун-те, ун-те Карнеги-Меллона. Исследования по РТС + информатике + выч.техн. + ИИ.

Российская школа – Совет по ИИ отделения информатики, выч.техники и автоматизации АН при Институте проблем управления РАН : акад. Поспелов Гермоген Сергеевич, Поспелов Д.А., Попов Э.В.,Захаров В.Н., Хорошевский и др.

История развития систем ИИ

Исторически сложились три основных направления в ИИ. В рамках первого подхода объектом исследований являются структура и механизмы работы мозга человека, а конечная цель заключается в раскрытии тайн мышления. Необходимыми этапами исследований в этом направлении являются построение моделей на основе психофизиологических данных, проведение экспериментов с ними, выдвижение новых гипотез относительно механизмов интеллектуальной деятельности, совершенствование моделей и т. д.

Второй подход в качестве объекта исследования рассматривает ИИ. Здесь речь идет о моделировании интеллектуальной деятельности с помощью вычислительных машин. Целью работ в этом направлении является создание алгоритмического и программного обеспечения вычислительных машин, позволяющего решать интеллектуальные задачи не хуже человека.

Наконец, третий подход ориентирован на создание смешанных человеко-машинных, или, как еще говорят, интерактивных интеллектуальных систем, на симбиоз возможностей естественного и искусственного интеллекта. Важнейшими проблемами в этих исследованиях является оптимальное распределение функций между естественным и искусственным интеллектом и организация диалога между человеком и машиной.

Самыми первыми интеллектуальными задачами, которые стали решаться при помощи ЭВМ были логические игры (шашки, шахматы), доказательство теорем. Хотя, правда здесь надо отметить еще кибернетические игрушки типа "электронной мыши" Клода Шеннона, которая управлялась сложной релейной схемой. Эта мышка могла "исследовать" лабиринт, и находить выход из него. А кроме того, помещенная в уже известный ей лабиринт, она не искала выход, а сразу же, не заглядывая в тупиковые ходы, выходила из лабиринта.

Американский кибернетик А. Самуэль составил для вычислительной машины программу, которая позволяет ей играть в шашки, причем в ходе игры машина обучается или, по крайней мере, создает впечатление, что обучается, улучшая свою игру на основе накопленного опыта. В 1962 г. эта программа сразилась с Р. Нили, сильнейшим шашистом в США и победила.

Каким образом машине удалось достичь столь высокого класса игры? Естественно, что в машину были программно заложены правила игры так, что выбор очередного хода был подчинен этим правилам. На каждой стадии игры машина выбирала очередной ход из множества возможных ходов согласно некоторому критерию качества игры. В шашках (как и в шахматах) обычно невыгодно терять свои фигуры, и, напротив, выгодно брать фигуры противника. Игрок (будь он человек или машина), который сохраняет подвижность своих фигур и право выбора ходов и в то же время держит под боем большое число полей на доске, обычно играет лучше своего противника, не придающего значения этим элементам игры. Описанные критерии хорошей игры сохраняют свою силу на протяжении всей игры, но есть и другие критерии, которые относятся к отдельным ее стадиям — дебюту, миттэндшпилю, эндшпилю.

Разумно сочетая такие критерии (например, в виде линейной комбинации с экспериментально подбираемыми коэффициентами или более сложным образом), можно для оценки очередного хода машины получить некоторый числовой показатель эффективности — оценочную функцию. Тогда машина, сравнив между собой показатели эффективности очередных ходов, выберет ход, соответствующий наибольшему показателю. Подобная автоматизация выбора очередного хода не обязательно обеспечивает оптимальный выбор, но все же это какой-то выбор, и на его основе машина может продолжать игру, совершенствуя свою стратегию (образ действия) в процессе обучения на прошлом опыте. Формально обучение состоит в подстройке параметров (коэффициентов) оценочной функции на основе анализа проведенных ходов и игр с учетом их исхода.

По мнению А. Самуэля, машина, использующая этот вид обучения, может научиться играть лучше, чем средний игрок, за относительно короткий период времени.

Можно сказать, что все эти элементы интеллекта, продемонстрированные машиной в процессе игры в шашки, сообщены ей автором программы. Отчасти это так. Но не следует забывать, что программа эта не является "жесткой", заранее продуманной во всех деталях. Она совершенствует свою стратегию игры в процессе самообучения. И хотя процесс "мышления" у машины существенно отличен оттого, что происходит в мозгу играющего в шашки человека, она способна у него выиграть.

Ярким примером сложной интеллектуальной игры до недавнего времени являлись шахматы. В 1974 г. состоялся международный шахматный турнир машин, снабженных соответствующими программами. Как известно, победу на этом турнире одержала советская машина с шахматной программой "Каисса".

К-во Просмотров: 358
Бесплатно скачать Учебное пособие: Теория искусственного интеллекта