Учебное пособие: Застосування нарисної геометрії у геодезії

Особливість креслень в проекціях з числовими відмітками або планів полягав в тому, що розміри на них, як правило, не проставляються. Відсутність розміра замінюється вказанням масштабу, в якому виконане креслення. Тому неодмінна умова всякого креслення, виконаного в проекціях з числовими відмітками - наявність масштабу.

Масштабом називається відношення довжини лінії на плані до відповідної проекції цієї лінії на місцевості, наприклад на ділянці земної поверхні. Це абстрактне число - правильний дріб. Для зручності користування і порівняння всі масштаби мають однаковий вигляд: чисельником дробу завжди є одиниця, при цьому знаменник безпосередньо виражає ступінь зменшення. Такий масштаб називається чисельним, наприклад: 1/100 /1:100/; 1/200 /1:200/; 1/500 /1:500/; 1/1000 /1:1000/ тощо. Чисельний масштаб дає загальну характеристику ступеня зменшення і не завжди зручний для практичних цілей. Для побудови планів або визначення довжини відрізків, узятих з плана, використовують лінійний масштаб, який наносять на плані у вигляді масштабної шкали /рис. 1.9/.

Зображенний на рас 1.9 лінійний масштаб відповідає чисельному 1:100 /10 мм на плані відповідають 1 м на місцевості/. Основу масштаба, розташовану ліворуч від нульової точки, як правило, ділять на десять рівних частин, кожна з яких /див. рис.1.9/ відповідає 0,1 м на місцевості. Це дає змогу робити вимірювання на плані з точністю до 0,1 м.


Розділ 2. Проекції прямих ліній

2.1 Проеціювання прямої загального положення

Спроекцюемо дві довільні точки А та В даної прямої n /рис. 2.1/ на основну площину π0 причому висоти точок А та В відповідно дорівнюють 2,5 та 5,4. Поряд в горизонтальними проекціями точок А та В проставимо їх числові відмітки, що дорівнюють висотам цих точок. Пряма, яка проведена через точки А2,5 та В5,4 , буде проекцією тільки однієї прямої в просторі.

Дійсно, якщо б горизонтальні проекції точок А та В прямої не були б доповнені їх числовими відмітками, то пряма, яка проходить через горизонтальні проекції точок А та В , була б проекцією усіх прямих, що знаходяться в горизонтально-проеціючій /вертикальній/ площині π0 , яка проходить через дану пряму n.

Отже, при зображенні прямої лінії в проекціях з числовими відмітками пряма загального положення може бути задана проекціями будь-яких двох незбіжних /нетотожних/ точок, належних до прямої, з указаниям їх числових відміток /рис 2.2/.

2.2 Визначення довжини прямої і кута її нахилу до основної площини

Кут α між прямою n і її проекцією на основну площину π0 /див. рис. 2.1./ є кутом нахилу прямої до основної площини: АМ0 А2,5 = α. Якщо в вертикальній площині π /див. рис. 2.1/ провести через точку А пряму АС, паралельну А2,5 В5,4 , то ВАС = α.

Кут α , а також натуральну величину відрізка прямої в проекціях з числовими відмітками визначають способом заміни площин проекцій /цей спосіб у проекціях з числовими відмітками називається способом профіля, де під профілем розуміють зображення, одержане на вертикальній площині проекцій/ або способом прямокутного трикутника.

Для визначення натуральної величини довжини відрізка AB прямої AB і кута її нахилу до π0 /див. рис. 2.1, 2.3/ будуємо профіль відрізка AВ на вертикальну площину π, яку розташовуємо паралельно даній прямій /див. рис. 2.3/, або проводимо через пряму /див. рис. 2.1/. Потім вертикальну площину π0 обертаємо навколо осі проекцій х1 до суміщення з основною площиною π0 одну площину креслення. Суміщений з основною площиною π0 профіль AB і визначає натуральну величину довжини відрізка AВ прямої n . Кут між профілем АВ і віссю проекцій х1 являє собою кут нахилу α прямої n до площини π0 .

На плані ці побудови виконаємо в такій послідовності /рис. 2.4/:

1. Проводимо вісь проекцій х1 паралельно проекцій А2,5 В5,4 .

2. Через проекції точок А2,5 та В5,4 проводимо лінії проекційного зв'язку перпендикулярно до оcі проекцій х1 .

3. Від точок перетину ліній проекційного зв'язку з віссю х1 у масштабі плана /можна і в більшому масштабі/ відкладаємо відрізки НА та НВ , довжина яких чисельно дорівнює відповідним відміткам точок А та В /при різних знаках числових відміток відрізки відкладають по різні сторони від осі х1 /. Одержимо точки А та В - це профілі точок А та В прямої n.

4. З'єднавши точки А та В прямою, одержимо відрізок AВ - профіль відрізка AВ на вертикальній площині π , який являє собою натуральну величину довжини відрізка AВ , заданого на π0 проекцією А2,5 В5,4 .

5. Кут між АВ і віссю проекцій х1 дорівнює куту α нахилу прямої n до основної площини cB .

Натуральну величину довжини відрізка прямої і її кут нахилу до основної площини можна визначити і способом прямокутного трикутника, один катет якого дорівнює проекції відрізка прямої на плані, а другий - алгебраїчній різниці числових відміток кінцевих точок відрізка прямої /рис. 2.5/.

Слідом прямої AВ /див. рис. 2.1/ на основній площині π0 буде точка Мо перетину продовження прямої з продовженням її проекції. Очевидно, що числова відмітка точки Мо дорівнює нулю, тобто має таку и числову відмітку, що і основна площина π0 .

Слідом прямої загального положення є точка прямої, яка має нульову числову відмітку.

Для побудови сліду прямої загального положення /рис. 2.6/, проекція якої показана на плані, необхідно побудувати суміщений з основною площиною ? профіль AB прямої на вертикальну площину і одержаний профіль AВ прямої продовжити до перетину з віссю проекцій X1 або з продовженням проекції А2 В6 даної прямої, якщо проекція прямої збігається з віссю х1 : М0 =АВnх , Потім точку М0 проецюємо на продовження проекцій А2 В6 , одержимо точку М0 , яка являє собою слід прямої AВ на площині π0 .

2.3 Заложення, нахил та інтервал прямої лінії

При вирішенні багатьох задач у проекціях з числовими відмітками використовують такі поняття та визначення: заложення, нахил та інтервал прямої. Для з'ясування значення цих понять та визначень розглянемо рис. 2.7, де дано наочне зображення прямої AВ і її горизонтальна проекція A2,6 В4,4 на основну площину π0 .

Заложенням називається довжина горизонтальної проекції від- різка прямої на основну площину і позначається буквою L /див. рис. 2.7/: L = A2,6 В4,4 - заложення відрізка прямої А В.

Різниця числових відміток кінців відрізка прямої, тобто різниця висот або координат Z точок його кінців, називається підйомом відрізка прямої і позначається буквою h /рис. 2.7/ на відміну від позначення висот точок відрізка прямої буквою Н .

Підйом h відрізка AB /див. рис. 2.7/: h = НВА = 4.4 -- 2,6 = 1,8 м.

Заложення та підйом відрізка прямої вимірюються в одиницях масштабу.

Нахилом прямої і називається відношення підйоме відрізка прямої до заложення цього ж відрізка /див. рис. 2.7, ∆ABB : і = h/L

Оскільки кут, утворений прямою і її проекцією на основну площину π, дорівнює куту α - куту нахилу прямої до площини π0 /див. рис. 2.7, ABB/, можна дати таке визначення нахилу прямої: нахил прямої дорівнює тангенсу кута нахилу прямої до основної площини: i = tg α = h/L /2.1/

Нахил прямої задається в десяткових дробах aбo у вигляді відношення 1:n, де n - будь-яке додатне число. Наприклад, нахил прямої AB /див. рис. 2.7, ∆АВВ / дорівнює: i=h/L= I.8/3.6 = = 0.5 - нахил заданий в десяткових дробах або i=1 : 2 - нахил прямої А В заданий, у вигляді відношення.

Іноді нахил вказують в промилях /позначається "°/оо"/ або в процентах /позначається "%"/. Промиле - одна тисячна будь-якого числа, а процент - сота частина будь-якого числа, тоді промиле - це десята частина процента. Наприклад:

І°/оо = 0,1% = 1:1000 = 0,001;

К-во Просмотров: 204
Бесплатно скачать Учебное пособие: Застосування нарисної геометрії у геодезії